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The Hamiltonian formulation of modified dispersion relations (MDRs) allows for their

implementation on generic curved spacetimes. In turn it is possible to derive phenomeno-

logical effects. I will present how to construct the kappa-Poincare dispersion relation on
curved spacetimes, its spherically symmetric realizations, among them the kappa de-

formation of Schwarzschild spacetime, and its implementation on Friedmann-Lemaitre-

Robertson-Walker spacetimes with arbitrary scale factor. In addition we will construct
the general first order modifications of the general relativistic dispersion relation. After-

wards we will use the perturbative MDRs to calculate specific observables such as the

redshift, lateshift and circular orbits.
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1. Traces of quantum gravity in point particle motion

A large source of information about the gravitational interaction come from the

observation of trajectories of freely falling particles, such as for example neutrinos

or photons, through spacetime. Traces of the expected quantum nature of gravity

and its influence on the particles’ paths therefore should manifest itself in the data

collected by telescopes and observatories. One approach to derive effects, one can

search for in the available data, is provided by quantum gravity phenomenology1.

Due to a still missing fundamental theory of quantum gravity, we proceed along the

following convincing pictorial idea to set up an effective model for the interaction

between point particles and gravity on small distances or high energies: When

test particles propagate through spacetime they probe spacetime on lengths scales

inverse proportional to their energy. Thus particles with larger energy probe smaller

length scales then lower energetic ones. The quantum nature of gravity is expected

to become relevant at the Planck scale, i.e. at the Planck energy Epl respectively the

Planck length `pl. Hence particles with larger energies, closer to the Planck energy,

probe length scales closer to the Planck length and should thus interact stronger

with the quantum features of gravity.

This pictorial idea can be seen analogue to how a medium can be probed with

photons of different energies, to obtain insights about its constituents. For very

low energetic photons the medium may be invisible, while photons within a certain

energy range may interact with the medium, get scattered and transport informa-

tion about the medium to an observer. For the interaction between photons and

the elementary constituents of the medium we know, that they are fundamentally

explained by the standard model of particle physics. However effectively one can
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describe several aspects of the system by an energy dependent propagation of the

photons through the medium. The latter can be derived from an effective theory of

electrodynamics, such premetric electrodynamics2, and leads to a non local lorentz

invariant (LLI) dispersion relation of the photons. Thus even though a fundamental

interaction is LLI, observables may be described effectively by a non LLI theory.

Regarding the structure of spacetime and the quantum nature of gravity, we

do not know the fundamental theory and of quantum gravity and its properties

yet. In analogy to the effective description of the propagation of photons through

media we will consider modifications of the general relativistic dispersion relation of

point particles on spacetime. From such modifications we can calculate observables

and look for their signatures in the available data. Any evidence or non-detection

of such a signal then reveals properties, suitable semi-classical limits of quantum

gravity must have.

Most famous effects searched for are an energy dependent redshift and time of

arrival (lateshift) of photons3. Preliminary analyses of the ICECUBE and Fermi

Gamma-Ray Space telescope observations for a lateshift effect have recently been

performed4–7 and shall be extended as soon as additional data is available.

We demonstrate how modified dispersion relations (MDRs) are realized on gener-

ically curved spacetimes we will derive observables such as the redshift, the lateshift

and photon orbit.

2. Dispersion relations as Hamilton functions

The study of non LLI effects and MDRs as effective description of the interaction

of point particles with the quantum nature of gravity has a long history in the

literature, see for example8–12 and references therein.

In13 we demonstrated how to realize modified dispersion relations on curved

spacetimes covariantly: A dispersion relation of a point particle on curved spacetime

is given by a level set of a Hamilton function H(x, p) on the point particle phase

space (cotangent bundle) of spacetime. The particle’s motion is determined by the

corresponding Hamilton equations of motion. Moreover the Hamiltonian defines the

geometry of phase space in a canonical way. In general spacetime and momentum

space are curved and their curvatures depend on positions and momenta.

Using this covariant approach to dispersion relations we recall the Hamilton

functions of general relativistic particles HGR and construct its first order per-

turbations H` as well as its κ-Poincaré deformations Hκ
14,15 on general16, static

spherically symmetric16 and homogeneous and isotropic spacetimes16–18.

On a generically curved spacetime the Hamiltonians are build from a spacetime

metric g, a perturbation function h and unit timelike vector field of the metric Z

HGR(x, p) = gab(x)papb , (1)

H`(x, p) = gab(x)papb + `h(x, p) , (2)

Hκ(x, p) = − 4
`2 sinh

(
`
2Z

c(x)pc
)2

+ e`Z
c(x)pc

(
gab(x)papb + (Zd(x)pd)

2
)
. (3)
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In static spherical symmetry the dependence of the Hamiltonians on the positions

and momenta is restricted to H(x, p) = H(r, pt, pr, v) with v2 = p2θ + sin θ−2p2φ
16,

HGR(x, p) = −a(r)p2t + b(r)p2r + r−2v2 , (4)

H`(x, p) = −a(r)p2t + b(r)p2r + r−2v2 + `h(r, pt, pr, v) , (5)

Hκ(x, p) = − 4
`2 sinh

(
`
2 (c(r)pt + d(r)pr)

)2
+ e`(c(r)pt+d(r)pr)

×
(
(−a(r) + c(r)2)p2t + 2c(r)d(r)ptpr + (b(r) + d(r)2)p2r + 1

r2 v
2
)
. (6)

Setting here a(r)−1 = b(r) = 1 − rs
r we obtain the κ-Poincaré deformations of

Schwarzschild spacetime parametrized by two free function c(r) and d(r).

On homogeneous and isotropic spacetimes the form of the Hamiltonian is further

restricted to H(x, p) = H(t, pt, w) with w2 = p2r(1− kr2) + r−2w2

HGR(x, p) = −p2t +A(t)−2w2 , (7)

H`(x, p) = −p2t +A(t)−2w2 + `h(t, pt, w) , (8)

Hκ(x, p) = − 4
`2 sinh

(
`
2pt
)2

+ e`ptA(t)−2w2 . (9)

3. Observables

A detection of traces of quantum gravity is most likely with high energetic photons

and every MDR of interest can be expanded to first order around HGR. Thus we

focus on the derivation of observables for massless particles from H`(x, p).

3.1. Redshift

The redshift of photons involves a description of how observers measure the fre-

quency of a photon. A classical observer, not subject to the MDR, on a worldline

x(τ) with tangent ẋ(τ), momentum px(τ) and mass m2
x = −HGR(x, px), associates

to a photon, subject to the MDR, on a worldline y(τ) ,with momentum py(τ) and

satisfying H`(y, py) = 0, the frequency

νx(y) = ẋapya = 1
2mx

∂paHGR(x, px) pya = 1
mx
gab(x) pxb pya . (10)

The redshift of a photon between two observers xi and xf then is

z(ti, ri, tf , rf ) ≡ z =
νxi (y)

νxf (y) − 1. (11)

Thus, two observers at rest at xi = (ti, ri,
π
2 , 0) and xf = (tf , rf ,

π
2 , 0) find for a

radially freely falling photon in spherical symmetry from (5) the redshift16

z =
√

a(rf )
a(ri)

− 1 +O(`2) , (12)

while for the homogeneous and isotropic case (8) they find that the redshift becomes

dependent of the constant of motion w, which is related to the photons frequency18

z =
(A(tf )
A(ti)

− 1
)
− `

2w2

A(tf )
A(ti)

(
A(tf )2h(tf , p

0
t (tf , w), w)−A(ti)

2h(ti, p
0
t (ti, w), w)

)
→
(A(tf )
A(ti)

− 1
)
− `wA(tf )−A(ti)

2A(ti)2
. (13)
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The first order momentum is p0t (t, w) = − w
A(t) and the last line displays the result

for a first order in ` expansion of the κ-Poincaré dispersion relation (9).

3.2. Lateshift

For the so called lateshift consider two massless particles with different frequency pa-

rameters w1 and w2 on radial trajectories r1(t, w1) and r2(t, w2) solving the Hamil-

ton equations of motion of (8). They shall be emitted at the same coordinates

(ti, Ri), i.e. Ri = r1(ti, w1) = r2(ti, w2), and we ask when do they reach the same

radial distance Rf = r1(t1, w1) = r2(t2, w2). The difference in their time of arrival

∆t = t2 − t1 is the so called lateshift. For the solutions of the radial Hamilton

equation of motion of (8), derived in18, we find,

∆t = `A(t1)

∫ t1

ti

dτ
f(τ,p0t (τ,w2),w2)−f(τ,p0t (τ,w1),w1)

A(τ) (14)

→ −`A(t1)(w1−w2)
2

∫ t1

ti

dτ 1
A(τ)2 . (15)

where again p0t (t, w) = − w
A(t) , the last line is the first order in ` result of (9), and

f(t, p0t (t, w), w) = 1
2(p0t )

2

[
h(t, p0t , w)− p0t∂pth(t, p0t , w)− w∂wh(t, p0t , w)

]
. (16)

3.3. Innermost circular photon orbits

To calculate the innermost circular photon orbits we solve the Hamilton equations

of motion of (5) with the assumption that ṙ = 0. The Hamilton equations of motion

∂prH` = ṙ = 0 and ∂rH = −ṗr with pr = p0r + `p1r then imply to first order in `

p0r = 0, p1r = −∂prh(r,pt,p
0
r,v)

b(r) ⇒ ṗ0r = 0 = ṗ1r (17)

and, using H`(x, p) = 0 to express pt as function of r and v,

0 = a′(r0)
a(r0)r20

+ 2
r30
, r1 =

∂rh(r0,p
0
t (r0,v),0,v)−

a′(r0)
a(r0)

h(r0,p
0
t (r0,v),0,v)( a′′(r0)

a(r0)r20
−
a′(r0)

2

a(r0)2r20
−

2a′(r0)
a(r0)r30

− 6
r40

)
v2

, (18)

which determine the allowed circular photon orbits r = r0 + `r1 to first order in `.

Considering MDRs on Schwarzschild spacetime by specifying the function

a(r)−1 = 1− rs
r the zeroth order becomes r0 = 3

2rs, as it must be, and the equation

which determines the first order correction becomes

r1 =
27r4s(∂rh(r0,p

0
t (r0,v),0,v)−

a′(r0)
a(r0)

h(r0,p
0
t (r,v),0,v))

32v2 . (19)

Specifying to the first order in ` of the spherically symmetric κ-Poincaré dispersion

relation (6) with d(r) = 0 and c(r) = 1√
1− rs

r

(19) yields r1 = v
6
16.
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