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- Technology|
SCAS and Gyposcope blki L b

Space cold atomic clock (SCAC): Tests of Cold Atom Clock in Orbit [Liu
et al., 2017]. ACES in ISS. An Atomic Clock with 1078 Instability on
the ground [[Hinkley et al. | 2013].

Optical clock: Frequency Comparison of Two High-Accuracy AlT Optical
Clocks [Chou et al. 10a).

Gyposcope: Continuous Cold-Atom Inertial Sensor with 1 nrad/sec
Rotation Stability [Dutta et al. | 2016].

Clocks and Relativity: optical clocks is enough to measure

relativity [Chou et al. |, 2010b], many relativistic experiments with atomic
clocks has been proposed [Reynaud et al. |, 2009], A precision
measurement of the gravitational red- shift by the interference of matter
waves has been done by Miiller et al. [2010], even a clock can directly
linking time to a particle’s mass [Lan et al. | 2013].
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Relativitic geodesic

o Relativitic geodesic: geodesic based on relativitic effect.

@ A Spaceborne Gravity Gradiometer Concept Based on Cold Atom
Interferometers for Measuring Earth’s Gravity Field [Carraz et al. | 2014].

e High Performance Clocks and Gravity Field Determination [Miiller et al. |
2018], Atomic Clocks for Geodesy [Mechlstaubler et al. . 2018].

Cold Atom
Gravimeter

= equipotential surface, shape water would take at rest
under Earth’s gravity and rotation

= deduced from extensive gravitational force
measurements and calculations

- uncertainty of geoid before GRACE: 30 — 50 cm

Figure: The slide from Christian Lisdat, Transportable optical clocks, Fundamental
Physics in Space, 656 th WE Heraeus Seminar, October 23 — 27, 2017.
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Psedo-Newtonian potenial in Kerr Spacetime apa*gﬂ;%;yw

quasi-inertial frame of PPN

@ Our plan is that spacetime structure exploration in the earth-moon
system by the above mentioned thecniques, which focus on surveying the
gravitational potential and gravitational first order redshift in
Schwarzchild spacetime geometry of the earth-moon system.

e Psedo-Newtonian potenial in Kerr Spacetime: one
example-Paczytiski-Wiita potential, Abramowicz [2009] A step-by-step
"derivation”. Commentary on Paczynisky & Wiita [1980]. Although all
Psedo-Newtonian potenial can back to PPN (Parameterized
Post-Newtonian formalism) in some order, we will check it in the
experiment.

e Local quasi-inertial frame of PPN: we also will check the effectness of the
diffecence local quasi-inertial frame defined of PPN in the experiment.
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Clock and Gyposcope as the porbe of curvature

FRATHTDALE

e The curvature have many structure, and very small. Kretschmann scalar
1/2
for the curvature & = (R"BV‘SRQW;) / = V48 M in Schwarzschild

r3¢2
metric [Baker et al. | 2015], the early paper estimate the curvature is
simliar but less V48 in Psaltis [2008], the early paper use Kretschmann

scalar to estimate curvature in [Henry, 2000].

e Sachs & Wu [1977] predict the clock Synchronization rate changing with
the curvature by h™'.

e Gyposcope and Riemann tensor: Audretsch & Lammerzahl [1983] had
study Local and nonlocal measurements of the Riemann tensor.
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Gravitational wave detection in 3 LPs

e With the technology development in the clock which include cold atomic
interferometric and optical frequency comb et al., and in the gyposcope
which include laser gyroscopes and fiber optic gyroscopes based on the
Sagnac effect and the matter wave gyroscopes et al., the plan of Atomic
Gravitational wave Interferometric Sensor (AGIS) was proposed.

e If had high precision instrumenmts in 3 satellites at least, we will done
detection of gravitational waves like AGIS.

@ A comparison between matter wave and light wave interferometers for the
detection of gravitational waves [Delva et al. | 2000].
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Space Curvature Precession in the Quasi-Stationary Curved spacetime:

Predictd by Geometrodynamic field moment C

FRATHTRALE

and One co-product of Curvature in the frame of Gravitoelectromagnetism

Gravitoelectromagnetis refers to a set of formal analogies between the equations for electromagnetism and
relativistic gravitation; specifically: between Maxwell’s field equations and an approximation, valid under
certain conditions, to the Einstein field equations for general relativity.

In the Slow rotation of spacetime, Geometrodynamic field moment should been Measured.
Space Curvature Precession is which Quantified Predicted by Jantzen et al. [1992] based on GEM.
We will try to find it in the data of the clock and the gyposcope.

B1259-63 [Shannon et al. . 2014]. Pros: We have 3 sources (15-30 M main-sequence stellar and 1.4 M
pulsar) in the sky.

Cons: The rotation of MMSS is slow that lead to the Schwarzschild spacetime geometry is enough. Pulsar
is not MSP (milli-second pulsar).

From the experiment, After Riemann Curvature Tensor Measurement in the Quasi-Stationary spacetime of
the periapsis from descending node to ascending node.
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Another co-product of Curvature in the frame of Gravitoelectromagnetiszg: i
Qaasizorce

Gravitomagnetic clock in the Quasi-Stationary Curved spacetime

e Cohen & Mashhoon [1993] give the gravitomagnetic clock effect for the
circular orbits. Recently, generalized gravitomagnetic clock effect was
calculated for the GNSS near the earth[Hackmann & Lammerzahl, 2014].

e We will try to find it in the data of the clock and the gyposcope.
e B1259-63 Shannon et al. [2014]
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Riemann Curvature Tensor Measurement

FRATHTDALE
in the Quasi-Stationary strong curved spacetime

We will try to have Riemann Curvature Tensor Measurement in the Quasi-Stationary spacetime of the
periapsis from descending node to ascending node.

From the theory, the estimated from Schwarzschild metric or Kerr metric, even the Solutions of Einstein
field equations in cylindrical coordinate system, EOB(Effective One Body) model...

We will try to find it in the data of the clock and the gyposcope.

From the experiment, have the best RMS of timing after considered the coordinate time, the coordinate
length, the coordinate mass, Lense-Thirring Precession, Gravitational secondary Red-shift...

The traditional orbit para

that the motion of binary

Tweo stars have no affected withe cach othor

senerated by the o 1 po 1 or Yy Stoars-

Figure: The Gedankenexperime the extreme elliptic binary MSP.
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From the CPT violation to Lorentz Invariance Vioiation

@ The symmetry is the important concept in the physics[Nocther, 1018], the discovery of parity conservation
violations in weak interactions make physicist pay attention to CPT conservation in the particle physics
and high energy physics[Lee & Yang, 1956]. After Yang-Mills used gauge invariance to the particle
physics[Yang & Mills, 1954], the symmetry and symmetry violations have the more impact on the standard
model which based on the gauge theory and Yang-Mills field.

@ After Colladay & Kostelecky [1998] give the theory about Lorentz-violating extension of the standard model,
the relation in the gravity, Lorentz violation, and the standard model also been discussed[Kostelecky, 2004].

@ Then, Greenberg [2002] point out that CPT violation implies violation of Lorentz invariance.
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- 22000 CPTviolation |
Gravitional 2nd Redshift of CPT violation T

e The time dilation symmetry violations in the Gravitational secondary
Red-shift:

e After Pound & Rebka [1960] measure the gravitational first order
red-shift, Jaffe & Vessot [1974] want to study the Second-Order
Gravitational Redshift in the earth[Jaffe & Vessot, 1975].

e Then Krisher [1993] point out that the symmetry violations is exist in the
parametrized post-Newtonian gravitational redshift. Yuan-Hong & Jun-Li
[2011] also have the similar result from the frame of
gravitoelectromagnetism.

e We will try to find it in the data of the clock and the gyposcope.

e 1500
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LT precession of CPT violation

( FRATRTDALE

@ In 1687, Newton [1687] published his book which include the famous discusson of inertial
forces on a fiuid contained in a rotating vessel. This discussion was critically re-examined by
Mach [1893] in an attempt to understand better how inertial forces arise. He suggested that
the shape of the water-surface may depend on the rotation of the vessel “if the sides of the
vessel increased in thickness and mass till they were ultimately several leagues thick”.

@ A calculation of such effects became possible afetr Einstein [1915] formulated his general
theory of relativity. Lense & Thirring [1918] proposes the precession on the vertical
direction of the motion.Lense-Thirring Precession (i.e. Frame dragging) aways was find in
the Astrophysical Context[Stella & Possenti, 2009], and in Physics as gravitomagnetism
effect[Schiifer, 2009].

Recently, He & Wang [20006] study frame dragging in the field of Kerr spacetime which based
on the model of rotating dust cloud in general relativity[Bonnor, 1977, Steadman, 1999].
Dubey & Sen [2016] also study frame-dragging from charged rotating body.

@ Those result show that the LT precession depend on the azimuthal, and the latitude, and
the mass of the central massive body (i.e. orbital symmetry violation).

@ As O’Connell [2009] point out that LT effect of one body is the difference with two body, we
think the above gyroscope model in the curve spacetime is the better than the two spin
particle model for understand one body LT effect near the periapsis.

@ We will try to find it in the data of the clock and the gyposcope.
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