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By applying the covariant Taylor expansion method of the heat kernel, Einstein anomaly
associated with the Weyl fermion of spin 1/2 interacting with nonabelian vector and
axial-vector fields in six dimensional curved space are manifestly given. From the relation

between Einstein and Lorentz anomalies, which are the gravitational anomalies, all terms

of the Einstein anomaly should form total derivatives. It is shown before the trace
operation of the gamma-matrices that the anomaly is expressed by the form expected.

Motivated by the quantum effects in supergravity, we study gravitational anomalies

in higher dimensional curved space. In supergravity coupled with super Yang-Mills

theory,1,2 the Lagrangian contains four-fermion interactions, which are regarded

as some two-fermion interactions with bosonic background fields expressed by odd-

order tensors. The completely antisymmetric part of the highest order tensor should

be rewritten as an axial-vector by contracting its tensor with the Levi-Civita symbol.

The (polar-)vector and the axial-vector parts in the two-fermion interactions can

be absorbed in the vector and the axial-vector gauge fields. The concrete form of

the gravitational anomalies in the model may directly be calculated by using the

heat kernel.3

The heat kernel K
{d}

(x, x′) for a fermion of spin 1
2 in d dimensions defined by

∂

∂t
K(d)(x, x′; t) = −HK(d)(x, x′; t), (1)

K(d)(x, x′; 0) = 1|h(x)|− 1
2 |h(x′)|− 1

2 δ(d)(x, x′), (2)

where δ(d)(x, x′) is the d-dimensional invariant δ-function, 1 = {δAB} the unit

matrix for the spinor, and h = dethaµ, in which haµ is a vielbein. Here H is the

second order differential operator, corresponding to the square of the Dirac operator

/D in the case of the fermion ψ,

H = /D
2
= DµD

µ +X, /D = γµ∇µ + Y, Dµ = ∇µ +Qµ, Qµ =
1

2
{γµ, Y },

X = Z −∇µQ
µ −QµQ

µ, ∇µψ = ∂µψ +
1

4
ωab

µ γab ψ, γa1···aj = γ[ai
· · · γaj ],

Z =
1

2
γµν [∇µ,∇ν ] + γµ∇µY + Y 2, [Dµ, Dν ]ψ = Λµν ψ, (3)
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where ωab
µ is the Ricci’s coefficient of rotation. When in d = 2n dimensions the

fermion interacts with vector and axial-vector fields which do not commute each

other, the Dirac operator contains the coupling of these bosons in Y ,

Y = γµVµ + γ2n+1γ
µAµ, Vµ ≡ V a

µ T
a, Aµ ≡ Aa

µT
a, γ2n+1 = inγ1γ2 · · · γ2n. (4)

Here the representation matrix T a of a gauge group, and V a
µ (Aa

µ) is pure imaginary

(real), because of the hermiticity of the Dirac operator. The quantities Qµ, X and

Λµν in (3) are expressed in the following tensorial form,

Qµ = Vµ − γ2n+1 γµρA
ρ, Fµν = ∂µVν − ∂νVµ + [Vµ, Vν ],

X = − 1

4
R+ 2(n− 1)AµA

µ − γ,2n+1A
µ
;µ + γµν

(
1

2
Fµν +

2n− 3

2
[Aµ, Aν ]

)
,

Λµν =
1

4
γρσRρσµν + Fµν − [Aµ, Aν ]− 2 γµνAρA

ρ + 2 γ[µ|
ρ{A|ν], Aρ}

+2 γ2n+1 γ[µ|ρA
ρ
;|ν] − 2 γµνρσA

ρAσ, (5)

where Rρσµν denotes the curvature tensor, and the semi-colon ’;’ means the Rie-

mannian covariant differentiation ∇µ + Vµ with respect to the vector gauge field.

The completely antisymmetric product γµνρσ of γ-matrices in the last term of Λµν

is rewritten by − ϵµνρσγ5 and − i
2ϵµνρσκλγ7γ

κλ in 4 and 6 dimensions, respectively.

The differential equation (1) of the heat kernel for the fermion interacting with

the general boson fields is not solvable strictly. Therefore the heat kernel is usually

calculated by using De Witt’s ansatz4, automatically satisfying (2),

K(2n)(x, x′; t) ∼ ∆1/2(x, x′)

(4πt)n
exp

(
σ(x, x′)

2t

) ∞∑
q=0

aq(x, x
′) tq, (6)

where σ (x, x′) is a half of square of the geodesic distance between x and x′,

∆ (x, x′) = |h(x)|−1|h(x′)|−1det {∇µ∇ν′σ (x, x′)}, and aq(x, x′) are bispinors. Note

that the metric tensor in curved space is gµν = haµh
b
νηab with ηab = − δab in flat

tangent space, and that the coincidence limit of a0 is limx′→x a0(x, x
′) ≡ [a0](x) = 1.

The products of σ;µ (≡ ∇µσ) construct orthonormal bases |n⟩ being the eigenfunc-

tions for σ;νDν , and the bispinor aq can be expanded by the bases,5

aq =

∞∑
n=0

|n⟩⟨n|aq⟩ =
∑
n

(−1)
n

n!
σ;µ′

1 · · ·σ;µ′
n lim

x→x′

[
D(µ1

· · ·Dµn)aq
]
,

aq (x, x
′) = ⟨0|aq⟩ (x′)− ⟨µ|aq⟩ (x′)σ;µ′

(x, x′) + · · · . (7)

The gravitational anomalies are obtained in the case of a massless Weyl fermion

ψL in 2n dimensions. The formal expressions of two gravitational anomalies, i.e.

the general coordinate anomaly A(2n)
µ and the Lorentz anomaly A(2n)

µν , are given

from the path integral measure.6 They are expressed by using the heat kernel
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K(2n) (x, x′; t) after the Gaussian cut-off regularization,

Dµ⟨Tµν⟩ = A(2n)
ν , ⟨Tµν⟩A ≡ 1

2
(⟨Tµν⟩ − ⟨Tνµ⟩) = A(2n)

µν ,

A(2n)
ν (x) = −1

2
lim
t→0

lim
x′→x

Tr
{
γ2n+1 (Dν −Dν′)K(2n) (x, x′; t)

}
,

A(2n)
µν (x) = −1

4
lim
t→0

lim
x′→x

Tr
{
γ2n+1γµνK

(2n) (x, x′; t)
}
, (8)

where Tr runs over both indices of γ-matrices and representation matrices of the

gauge group. Since these anomalies simultaneously appear and are related to each

other, A(2n)
ν = 2DµA(2n)

µν ,7 it seems that both general covariance and local Lorentz

symmetry break down.

We consider the ”pure” general coordinate anomaly Gµ is given by redefining the

energy-momentum tensor density so that the local Lorentz symmetry is preserved,

Dµ⟨T ′
µν⟩ = Dµ⟨T ′

µν⟩S = G(2n)
ν = DµA(2n)

µν =
1

2
A(2n)

ν , ⟨T ′
µν⟩A = 0 (9)

with ⟨T ′
µν⟩ = ⟨Tµν⟩ −A(2n)

µν , where ⟨T ′
µν⟩S is the symmetric part of the expectation

varue of the energy-momentum tensor. The ”pure” general coordinate anomaly in

(9) is called as the Einstein anomaly. The ”pure” Lorentz anomaly is also obtained

by redefining the energy-momentum tensor density so that the general covariance

is preserved,

⟨T ′′
µν⟩ = ⟨Tµν⟩ − 2A(2n)

µν , Dµ⟨T ′′
µν⟩ = 0, ⟨T ′′

µν⟩A = −A(2n)
µν . (10)

In order to perform the concrete calculation in 2n dimensions, the Einstein

anomaly is rewritten by the expansion coefficients of an in (7) and its derivatives,

G(2n)
ν (x) = − 1

4(4π)n
Tr {γ2n+1(2⟨ν|an⟩ − ⟨0|an⟩!ν)(x)} . (11)

where the exclamation mark ’!’ means the modified covariant differentiation Dν .

The anomaly in 4 dimensional curved space had already been derived,8,9

G(4)
ν = − 1

64π2
Tr

{
γ5(2⟨ν|a2⟩ − ⟨0|a2⟩!ν)

}
=

1

192π2
Tr γ5 (ΛµνX)

!µ

=
1

64π2
tr
[
ϵµνρσ

(1
6
Rρσ

κλF
κλ − 1

6
RF ρσ +

1

3
F ρσ ;λ

λ

+
4

3
{Aλ, A

ρ}Fλσ +
8

3
AρAσAλA

λ
)

− 4

3
(FµνA

σ
;σ + 2F[µ|λA

λ
;|ν]) + 8A[µAνA

σ
;σ]

];µ
, (12)

where ”tr” means a trace over the representation matrices of the gauge group. A

derivative term in G
(4)
ν before the trace operation of γ-matrices becomes some terms

in tensorial form after the operation, and the Lorentz anomaly A(4)
µν may easily be

given from the resultant form of G
(4)
ν by the relation (9). Such properties of G

(4)
ν
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is succeeded in the case of G
(6)
ν . Indeed, the straightforward calculation gives the

concrete form of G
(6)
ν as expected,

G(6)
ν = − 1

256π3
Tr

{
γ7(2⟨ν|a3⟩ − ⟨0|a3⟩!ν)

}
= − 1

256π3
Tr

{
γ7

[1
6
Λµν

(
1

6
R+X

)2

+
1

45
J[µX!ν] −

1

60
J[µ!ν]X

+
1

15
ΛµνX!ρ

ρ +
2

45
Λµν!ρX

!ρ +
1

40
Λµν!ρ

ρX +
1

180
[Λµρ,Λν

ρ]X

+
1

180
Rρ

[µΛν]ρX +
17

360
RµνρσΛ

ρσX +
1

36
ΛµνΛρσΛ

ρσ

+
1

45
Λ[µ

ρΛν]
σΛρσ − 1

90
Λµν!ρJ

ρ +
1

45
Λρ[µJν]

!ρ
];µ}

, (13)

where Jρ ≡ Λσρ
!σ. Some total derivative terms in G

(6)
ν before the trace operation

will yield many terms in tensorial form, by using (5), and the derivation is still in

progress.

If all Aµ are abelian in (12), then G
(4)
ν corresponds to the anomaly in space

with torsion, which is originally expressed by the third order antisymmetric tensor.

The dual vector of the tensor in four dimensions behaves as the axial-vector.8 Note

that the dual tensor of torsion in six or higher dimensions is the third or higher

order antisymmetric tensor. In supergravity, there appear the contrtibutions of the

vector, the axial-vector and the third order antisymmetric tensor fields, together,

which do not commute. The anomaly with the vector and the axial-vector fields in

six-dimensional space with nonabelian torsion may have the new terms containing

the third order torsion tensor.
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