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Abstract In this paper I present three explicit examples of generalizations in rel-
ativistic quantum mechanics. First of all, I discuss the generalized spin-1/2 equa-
tions for neutrinos. They have been obtained by means of the Gersten-Sakurai
method for derivations of arbitrary-spin relativistic equations. Possible physical
consequences are discussed. Next, it is easy to check that both Dirac algebraic
equation Det( p̂−m) = 0 and Det(p̂+m) = 0 for u− and v− 4-spinors have so-
lutions with p0 = ±Ep = ±

√
p2+m2. The same is true for higher-spin equations.

Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors
of the (1/2,0)⊕ (0,1/2)) representation only, thus applying the Dirac-Feynman-
Stueckelberg procedure for eliminating negative-energy solutions. The recent Zi-
ino works (and, independently, the articles of several others) show that the Fock
space can be doubled. We re-consider this possibility on the quantum field level for
both S = 1/2 and higher spin particles. The third example is: we postulate the non-
commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation.
The applications are discussed.

1 Generalized neutrino equations

A. Gersten [1] proposed a method for derivations of massless equations of arbitrary-
spin particles. In fact, his method is related to the van der Waerden-Sakurai [2] pro-
cedure for the derivation of the massive Dirac equation. I commented on the deriva-
tion of the Maxwell equations in [3]. Then, I showed that the method is rather ambi-
gious because instead of free-space Maxwell equations, one can obtain generalized
S= 1 equations, which connect the antisymmetric tensor field with additional scalar
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fields. The problem of physical significance of additional scalar chi-fields should be
solved of course by experiment.

In the present paper I apply the van der Waerden-Sakurai-Gersten procedure to
spin-1/2 fields. As a result one obtains equations which generalize the well-known
Weyl equations. However, these equations are known for a long time [4]. Raspini [5,
6] analyzed them again in detail. I add some comments on physical contents of
the generalized spin-1/2 equations. The generalized equation can be written in the
covariant form.

[
iγµ∂µ −

m2
2c

m1h̄
(1− γ5)

2
− m1c

h̄
(1+ γ5)

2

]
Ψ = 0 . (1)

The standard representation of γµ matrices has been used here. If m1 = m2 we can
recover the standard Dirac equation. As noted in [4b] this procedure can be viewed
as the simple change of the representation of γµ matrices. However, this is valid
unless m2 ̸= 0. Otherwise, entries in the transformation matrix become singular.
Furthermore, one can either repeat a similar procedure (the modified Sakurai proce-
dure) starting from the massless equation (4) of [1a] or put m2 = 0 in eq. (1). The
massless equation is

[
iγµ∂µ −

m1c
h̄

(1+ γ5)
2

]
Ψ = 0 . (2)

It is necesary to stress that the term ‘massless’ is used in the sense that pµ pµ = 0.
Then we may have different physical consequences following from (2) comparing
with those which follow from the Weyl equation. The mathematical reason of such
a possibility of different massless limits is that the corresponding change of rep-
resentation of γµ matrices involves mass parameters m1 and m2 themselves. It is
interesting to note that we can also repeat this procedure for other definitions, which
gives us yet another equation in the massless limit (m4→ 0):

[
iγµ∂µ −

m3c
h̄

(1− γ5)
2

]
Ψ̃ = 0 , (3)

differing in the sign at the γ5 term.
The above procedure can be generalized to any Lorentz group representations,

i.e., to any spins. Is the physical content of the generalized S = 1/2 massless equa-
tions the same as that of the Weyl equation? Our answer is ‘no’. The excellent dis-
cussion can be found in [4a,b]. First of all, the theory does not have chiral invariance.
Those authors call the additional parameters as measures of the degree of chirality.
Apart from this, Tokuoka introduced the concept of gauge transformations (not to
be confuses with phase transformations) for the 4-spinor fields. He also found some
strange properties of the anti-commutation relations (see Sec. 3 in [4a] and cf. [8]).
And finally, the equation (2) describes four states, two of which answer for the pos-
itive energy E = |p|, and two others answer for the negative energy E =−|p|.
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I just want to add the following to the discussion. The operator of the chiral-
helicity η̂ = (α · p̂) (in the spinorial representation) used in [4b] does not commute,
e.g., with the Hamiltonian of the equation (2). Do not confuse with the Dirac Hamil-
tonian!

[H ,α · p̂]− = 2
m1c
h̄

1− γ5

2
(γ · p̂) . (4)

For eigenstates of the chiral-helicity the system of corresponding equations can be
read (η =↑,↓)

iγµ∂µΨη −
m1c
h̄

1+ γ5

2
Ψ−η = 0 . (5)

The conjugated eigenstates of the Hamiltonian |Ψ↑+Ψ↓ > and |Ψ↑ −Ψ↓ > are con-
nected, in fact, by γ5 transformationΨ→ γ5Ψ ∼ (α · p̂)Ψ (orm1→−m1). However,
the γ5 transformation is related to the PT (t→−t only) transformation [4b], which,
in its turn, can be interpreted as E → −E, if one accepts the Stueckelberg idea
about antiparticles. We associate |Ψ↑ +Ψ↓ > with the positive-energy eigenvalue
of the Hamiltonian E = |p| and |Ψ↑ −Ψ↓ >, with the negative-energy eigenvalue
of the Hamiltonian (E = −|p|). Thus, the free chiral-helicity massless eigenstates
may oscillate to one another with the frequency ω = E/h̄ (as the massive chiral-
helicity eigenstates, see [7a] for details). Moreover, a special kind of interaction
which is not symmetric with respect to the chiral-helicity states (for instance, if the
left chiral-helicity eigenstates interact with the matter only) may induce changes in
the oscillation frequency, like in the Wolfenstein (MSW) formalism.

2 Negative energies in the Dirac equation

The general scheme for constructing the field operator has been presented in [9].
During the calculations above we had to represent 1= θ(p0)+θ(−p0) in order to
get positive- and negative-frequency parts. Moreover, during these calculations we
did not yet assume which equation this field operator (namely, the u− spinor) does
satisfy, with negative- or positive- mass? In general we should transform uh(−p)
to the v(p). The procedure is the following; see [10]. In the Dirac case we should
assume the following relation in the field operator:

∑
h
vh(p)b†h(p) = ∑

h
uh(−p)ah(−p) . (6)

By direct calculations, we find that

−mb†(µ)(p) = ∑
λ

Λ(µ)(λ )(p)a(λ )(−p) . (7)

Hence, Λ(µ)(λ ) =−im(σ ·n)(µ)(λ ), n= p/|p|, and
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b†(µ)(p) = i∑
λ
(σ ·n)(µ)(λ )a(λ )(−p) . (8)

However, other ways of thinking are possible. Unless the unitary transformations do
not change the physical content, we have that the negative-energy spinors γ5γ0u−
satisfy the accustomed “positive-energy” Dirac equation. We should then expect the
same physical content. Their explicite forms γ5γ0u− are different from the textbook
“positive-energy” Dirac spinors. They are the following

ũ(p) =
N√

2m(−Ep+m)

⎛

⎜⎜⎝

−p++m
−pr

p−−m
−pr

⎞

⎟⎟⎠ , (9)

˜̃u(p) =
N√

2m(−Ep+m)

⎛

⎜⎜⎝

−pl
−p−+m
−pl

p+−m

⎞

⎟⎟⎠ . (10)

Ep =
√
p2+m2 > 0, p0 =±Ep, p± = E± pz, pr,l = px± ipy. Their normalization

is to (−2N2). Similar formulations have been presented in Refs. [11], and [12]. The
group-theoretical basis for such doubling has been given in the papers of Gelfand,
Tsetlin and Sokolik [13], who first presented the theory in the 2-dimensional repre-
sentation of the inversion group in 1956 (later called as “the Bargmann-Wightman-
Wigner-type quantum field theory” in 1993). The Markov equations, of course, can
be identified with equations for the Majorana-like λ− and ρ−, which we presented
in Ref. [7]. Neither of them can be regarded as the Dirac equation. However, they
can be written in the 8-component form as follows:

[
iΓ µ∂µ −m

]
Ψ

(+)
(x) = 0 , (11)

[
iΓ µ∂µ +m

]
Ψ

(−) (x) = 0 . (12)

One can also re-write the above equations into two-component forms. Thus, one
obtains the Feynman-Gell-Mann [14] equations. As Markov wrote himself, he was
expecting “new physics” from these equations. Barut and Ziino [12] proposed yet
another model. They considered γ5 operator as the operator of the charge conjuga-
tion. Thus, the charge-conjugated Dirac equation has a different sign in comparison
with the ordinary formulation, and the so-defined charge conjugation applies to the
whole system, fermion + electromagnetic field, e→−e in the covariant derivative.
Superpositions of theΨBZ andΨ c

BZ also give us the “doubled Dirac equation”, as the
equations for λ− and ρ− spinors. The concept of the doubling of the Fock space
has been developed in the Ziino works (cf. [13, 15]) in the framework of quantum
field theory. In their case the self/anti-self charge conjugate states are simultane-
ously the eigenstates of the chirality. Finally, I would like to mention that in general,
in the Weyl basis, the γ− matrices are not Hermitian, γµ†

= γ0γµγ0. So, γ i† =−γ i,
i= 1,2,3, the pseudo-Hermitian matrix. The energy-momentum operator i∂µ is ob-
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viously Hermitian. So, the question is whether the eigenvalues of the Dirac opera-
tor iγµ∂µ (the mass, in fact) would be always real? The question of the complete
system of the eigenvectors of the non-Hermitian operator deserve careful consid-
eration [16]. Bogoliubov and Shirkov [9, p.55-56] used the scheme to construct a
complete set of solutions of the relativistic equations, fixing the sign of p0 =+Ep.

The main points of this section are: there are “negative-energy solutions” in that
is previously considered as “positive-energy solutions” of relativistic wave equa-
tions, and vice versa. Their explicit forms have been presented in the case of spin-
1/2. Next, relations to previous works have been found. For instance, the doubling
of the Fock space and the corresponding solutions of the Dirac equation obtained
additional mathematical bases. Similar conclusion can be deduced for higher-spin
equations.

3 Non-commutativity in the Dirac equation

The non-commutativity [17, 18] exibits interesting peculiarities in the Dirac case.
We analyzed Sakurai-van der Waerden method of derivations of the Dirac (and
higher-spins too) equation [19]. We can start from

(EI(4) +α ·p+mβ )(EI(4)−α ·p−mβ )Ψ(4) = 0 . (13)

Obviously, the inverse operators of the Dirac operators of the positive- and negative-
masses exist in the non-commutative case. We postulate the non-commutativity re-
lations for the components of 4-momenta: [E,pi]− = Θ 0i = θ i as usual. Thus, we
come to {

E2−p2−m2− (α ·θ)
}

Ψ(4) = 0 . (14)

However, let us apply the unitary transformation. It is known [7,20] that one can

U1(σ ·a)U−11 = σ3|a| . (15)

The explicit form of theU1 matrix can be found in [19, 20].
Let us apply the second unitary transformation:

U2α3U
†
2 =

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎠α3

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎠=

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ . (16)

The final equation is

[E2−p2−m2− γ5chiral |θ|]Ψ ′(4) = 0 . (17)

toppan@cbpf.br



170 Valeriy V. Dvoeglazov

In the physical sense this implies the mass splitting for a Dirac particle over the
non-commutative space m1,2 = ±

√
m2±θ . This procedure may be attractive for

explaining the mass creation and mass splitting for fermions.
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