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Abstract. We find that having the scale factor close to zero due to a given magnetic field value 

in, an early universe magnetic field affects how we would interpret Mukhanov’s chapter on 

‘self reproduction of the universe’ in in his reference “Physical foundations of cosmology” 

terms of production of inhomogeneity during inflation and its aftermath. The stronger an early 

universe magnetic field is, the greater the likelihood of production of about 20 new domains of 

size 1/ H, with H early universe Hubble’s constant, per Planck time interval in evolution. One 

final caveat to consider. What may happen is that the Camara (2004) density and 

Quintessential density (Corda et al.) are both simultaneously satisfied, which would put 

additional restrictions on the magnetic field which in turn affects structure formation.  In time, 

once Eq.(16) of this paper is refined further, the author hopes that some of the issues raised by 

Kobayashi and Seto as to allowed inflation models may be addressed, once further refinement 

of these preliminary results commences . We mention fluctuations in the Hubble expansion 

parameter, H, as given below may affect structure as given in reference [10] below. We close 

with statements as to the value of  in a gravitational potential proportional to r −
and how 

this adjustment affects the 3 body problem. 

1.  Introduction 

 

Part 1 : We first of all will look at how a scale factor is affected by the NLED paradigm which in fact 

also is linked to the idea of ‘self reproduction’ as given in [1], which is a different way as to outline 

how this affects the evolution of density in the early universe. 

 

Part 2 : Next , after having done this, we give a description of an equation for setting the value of  in 

a gravitational potential proportional to r −
. This  has real and complex values, unlike the 

Newtonian real value 

 

Part 3: We then summarize what this has to do with possible revisions of the three body problem [2] 

with a particular mention as to how this would affect material as of page 141 and beyond in [2] with 

implications as to astrophysics. 

 

 

2.  Part 1, We first of all will look at how a scale factor is affected by the NLED paradigm which 

in fact also is linked to the idea of ‘self reproduction’ 

 
This part of the paper has several routes as to identifying NLED phenomenon pertinent to cosmology structure 

formation. First we look at what Mukhanov [1] writes as far as structure formation. Mainly that there is a 

formulation of what is called self reproduction of inhomogeneity in terms of early universe condition [1]. In this, 

the starting point is if one used the meme of chaotic inflation, i.e. inflation generated by a potential of the form 

as given by Guth [3] as well as Mukhanov [1] 



 

 

 

 

 

 

 

( ) 2~V potential          (1) 

 

In this, Mukhanov [1] write that one can look at a scalar field at the end of (chaotic) inflation, with an amplitude 

given by, with 
i for the initial value of the inflaton such that ( where m will be determined by NLED inputs to 

be brought up later.) 
 

2~Max

im           (2) 

 

In terms of the initial inflaton, inhomogeneities do not form if the initial inflaton is bounded [1] as given by 
 

1 1/2

im m− −           (3) 
 

This leads to (low?) inhomogeneity in the space-time generated by inflation. Inflation is eternal [1,3] if. there is 

only the inequality 
 

1/2

i m −          (4) 

 
 

2a.  NLED applied to Eq. (4) plus details of structure formation added  

What we will do is to look at the following treatment of mass, and this will be our starting 

point. i.e. we will be looking at, if 
Pl is Planck length, and  >0, then 

( )3~10 pm l density           (5) 

Then we can consider the following formulation of density given below. 

If we do not wish to consider a rotating universe, then Camara et al, [4] has an expression as to 

density, with a B field contribution to density, and we also can used the Weinberg result [5]of scaling 

density with one over the fourth power of a scale factor, which we will remark upon in the general 

section, as well the Corda and Questa result of [6] for density of (note  reference [6]  is for a star, 

whereas [4] is for a universe) 

In addition, Corda, and others in [6] use quintessential density to falsify the null energy condition of a 

Penrose theorem cited in [7], Further details of what Penrose was trying to do as to this issue of GR, 

can be seen in [8], and to answer how to violate the null energy condition, one should go to [6] for 

quintessential density defined, with the constant in Eq. (4) greater than zero. Then in both the massive 

star and the early universe, the density result below is applicable. 
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1

16

3
c B =            (6) 

Keeping in mind what was said as to choices of what to do about density, and its relationship to Eq.(5) 

above, we then can reference what Mukhanov[1] says about structure formation as follows, namely 

look at how a Hubble parameter changes  with respect to cosmic evolution. It changes with respect to 

todayH being the Hubble parameter in the recent era, and the scale factor a , with this scale factor being 

directly responsive to changes in density according to [5], i.e. 



 

 

 

 

 

 

4~ a −
          (7) 

In the next section, we will examine how [4] suggests how to vary the scale factor cited in Eq. (7), and 

we will in this section take note of what the scale factor cited in [4] does to the Hubble parameter 

given in Eq. (8) below, and then in the section afterwards review a possible reconciliation of what 

Eq.(6) and Eq.(7) say about defining early universe parameters. But to know why we are doing it, we 

should take into consideration what happens to the Hubble parameter, as given below 

3/2~ todayH H a          (8) 

According to [1], if Eq. (4) holds, then inhomogeneous patches of space time appear in a causal region 

of space time for which 

( )1 3/2~ ~ 1/ todayCausal domain H H a−−       (9) 

Furthermore, [1] states that about 20 such domains are created in a Hubble time interval 
1

Ht H − 

i.e. As a function of say 10 times Planck time, for a domain size given by Eq. (9) above and that this 

requires then a clear statement as to how the scale factor changes, due to considerations given by [4] 

and reconciling the density expression given in Eq.(6) and Eq.(7) above. 

2b. Showing a non-zero initial radius of the universe due to nonlinear space-time E&M 

 

What we are asserting is. in [1] there exists a scaled parameter  , and a  parameter 
0a which is paired 

with 
0 . For the sake of argument, we will set the 0 Plancka t , with 

Planckt ~ 10^ - 44 seconds. Also,  is a 

cosmological ‘constant’ parameter which is described later, as in quintessence , via reference [9], and is in [4] 

via: 
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0
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G
B

c





=           (10) 

 

2 3c =           (11) 
 

Then if , initially, Eq. (11) is large, due to a very large    the time, given in Eq.(53) of [4] is such that we can 

write , most likely, that even though there is an expanding and contracting universe, that the key time parameter 

may be set , due to very large    as 
 

44

min 0 ~ 10Planckt t t s−          (12) 

 

Whenever one sees the coefficient like the magnetic field, with the small 0 coefficient, for large values of  , 

this should be the initial coefficient at the beginning of space-time which helps us make sense of the non zero but 

tiny minimum scale factor[1] 
 

( )
1/4

2 20
min 0 0 0 0 032

2
a a B


   



 
=  + − 

 
      (13) 

 



 

 

 

 

 

 

The minimum time, as referenced in Eq.(12) most likely means, due to large   that Eq. (13) is of the order of 

about 
5510−

, i.e. 33 orders of magnitude smaller than the square root of Planck time, in magnitude. We next will 

be justifying  the relative size of the       

2c.  Showing How to obtain a varyingwith a large initial value and its relationship to 

obtaining a scale factor value for the early universe via NLED methods 

 
Non withstanding the temperature variation in reference [9] for the cosmological Hubble parameter, we also 

can reference what is done in reference [4] namely 

( ) ( )
2

inflation~t H          (14) 

1. In short, what we obtain, via looking at due to [9], that Eq.(14) is also equivalent to 

 

2~Max temperaturec T           (15) 

 

Comparing Eq.(6) and Eq.(7) above, leads to the following constraints, i.e. 

 

( ) ( )
1
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a a c B a B


    



−
− − − −  

  + − 
 

   (16) 

 

The above relationship will argue in favor of a large value for Eq.(15) and Eq.(16) B field and also the 

cosmological ‘constant’ parameterized in Eq. (14) and Eq.(15), i.e. once fully worked out, the allowed values of 

B, for initial conditions will be large but tightly constrained, and this in turn will allow for Eq. (9) having 

initially extremely small inhomogeneity behavior, in line with being proportional  to the inverse of an allowed 

Hubble parameter based upon Eq. (8). Note that from [11] we have 

2 2 5~ ~ 10m

H
h

H

−




          (17) 

Here, we have that if there is a flat universe, that according to Guth [12] and taking note of 

2 8

3
H


=           (18) 

Roughly put, what we are predicting is, that if we use what Lloyd wrote, namely [13] as well as use 

the magnetic field relations to density brought up in reference [6], then  
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If we have such a treatment of information as given by Lloyd [13], plus the above, we can estimate 

that there is a fluctuation due to early universe cosmology along the lines of, if we have a base line 

number for initial (expansion) value of the Hubble parameter, we call 
base lineH −

.as a starting point for 

an expanding universe, and with #operations , as given by Lloyd [13] as a function of entropy, 

initially. So then, in terms of what may be generated and show up in the CMBR we may see 

1/4 5( ) ~ (# ) 10 /base line PlanckH thermal H operations t t−

−        (20) 

Eq. (16) to Eq. (18) , if we write a change in H, as given by Eq.(17) and that along the lines of figure 2 

of reference [11], we have , perhaps, the beginning of how NLED may impact fluctuations in H, which 

in turn may lead to the issue we started our discussion over. Eq (20) may give some insight as to the 

fluctuations which show up in figure 2, of [11] 

2d. Conclusion for Part 1. Tightly constrained but very large magnetic fields allow for 

inhomogeneous patches due to NLED showing up in CMBR: Relevance to Bicep 2 dispute? 

 

Note that Eq. (11) to Eq. (13)  are arguing in favor of a very small scale factor, implying a 

large initial density while Eq. (16) appears to give credence to a large Hubble parameter. Further work 

will come up with a set of constraints as to admissible early universe quintessence, ie. Answering the 

question if the cosmological constant is significantly larger, and if it plays a role in structure formation 

is important, especially in lieu of the Bicep 2 results which purport to favor large field inflation [10]. 

While not wishing to get immersed in the details of the data controversy surrounding Bicep 2 at this 

immediate time, further refinements of NLED , and the relationship in Eq.(16) , as to structure 

formation may give credence, or help falsify the conclusions of reference [10], with great refinements 

and equalities needed in defining more precisely the suggested relationships implied in Eq.(16) 

 

Eq. 16 to Eq. (18) will in tandem lead to some of the variation of structure given in Figure 2 of 

[10} which we argue should be seen as a compliment to the work given by [11]. In addition, the 

interplay between Eq. (20) and Eq. (9) may be ripe for computer simulation work. 

 

We shall next investigate how part 1 and its results affect gravitational potential behaviour, in the 

Pre Planckian to Planckian universe evolution, next. 

3.   Part 2, the problem of the  in a gravitational potential proportional to r
−

 

In order to review this, we need to look at [14] where we can use the following treatment of the Klein 

Gordon equation which we write as 
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Here, k is the value of wave number, and H is assumed, in the early universe to be a constant. The net 

result is that 2 /k  =  , with  proportional to the ‘width’ of a would be pre universe ‘bubble’ as 

seen in [15]  place of a singularity, and also that one would have, for a constant H, during this time as 

seen by [16, 17]  
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Further use of [17] will lead to the situation that 
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Chaotic inflation would be using the approximation that 

 

                                                       ( )
2

2

2

k
V

a
                                                         (24) 

Use the approximation that the time derivative is /d d , and 
k  , and if so, then 
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The last line of Eq. (25) states that , if we apply it to the Pre Planckian to Planckian regime, that 

there will be a change in the energy, which we will call 
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We then will call this shift in energy, as equivalent to a change in KINETIC energy, and then 

reference the Virial theorem which in a general form, will be interpreted as 



 

 

 

 

 

 

               ( )| | | |Kinetic Energy r V Potential energy   − =  −  (27) 

 

Leading to 
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    (28) 

In the Pre Planckian to Planckian space time, we will approximate, in the instant before time is 

initialized, formally, the mean value theorem as to the computed values of both the Left and right hand 

sides of Eq. (27) and Eq. (28) with the results that we obtain 
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    (29) 

 

Here, the magnetic field would be determined in part by the value of B, as given in [19], and the 

scale factor a , is given by Eq. (13), and  
k  is given by Eq. (21).  

 

This shows in part that   is no longer strictly real valued but is strongly influence by the input 

from 
k , i.e. which has real and imaginary components 

 

We will next, in Part 3 of this document conclude with a specific statement as to how the 3-body 

problem, and in fact other experimental science could be impacted by Eq. (29) and a careful reading of 

[2], page 134, has a very carefully done section on the so called Lagrangian equilateral triangle and 

possible orbits 3 body problem,  and [20] has its section on the KAM theory, page 15, which are 

subsequently modified, and which may yield more rigorous simulations, in the computer numerical 

sense which in turn could give us more useful input into experiments. 

 

4.  How to reconcile our developments with ascertaining limitations and also improvements on 

the 3 body Problem of Classical physics (plus its quantum analogues) 

 

What we are doing is to consider both [2] and [20] in terms of KAM theory, [20], as of page 15, 

has in its classical mode a highly restricted set of equations, as given by having the following quote 

 

From [20], 

 

Quote 

 

Now, the KAM theorem tells us that when the system is slightly perturbed most of the invariant tori 

are not destroyed but only slightly shifted in the phase space. This has important implications on 

stability of orbits in the general and restricted three body problem. The proof of the KAM theorem by 

Moser [1962] and Arnold [1963] also demonstrated that convergent power series solutions exist for 

the three-body (as well as for the n-body) problem. The KAM theorem seems to be very useful for 



 

 

 

 

 

 

studying the global stability in the three-body problem [Robutel, 1993a, Montgomery, 2001, Sim´o, 

2002]; however, some of its applications are limited only to small masses of the third body 

 

The limitation as stated as of KAM theory is that MOST of the time, we have that the KAM results 

require a third body to be low mass. 

 

This is a classical dynamical system result. What we should endeavour through judicious application 

of Eq.  (29) is to remove dependence upon the smallness of the third mass, and to examine if this can 

still, with a nonnon-trivial third mass recover still much of the stability analysis 

 

Later, at an appropriate time this question in terms of a serious application of the value of Eq. (29) will 

be pursued 

 

Secondly, as of [2], the section give on page 154, entitled “6.4 Orbital changes in encounters with 

planets”, which is a restricted 3 body problem , frequently is used as to the interaction of say comets 

(comparatively small mass) with a planet, circulating the Sun, where we have 2 ‘massive’ masses, and the 

third body , in this case a comet, which gives usually parameters of how a hyperbolic orbit for a comet, i.e. 

one which enters in a planet- Sun system are impacted via how the parameters of say a hyperbolic trajectory 

of a minor mass object (comet) are impacted in a simple solar system model. 

 

We hope that by judicious investigation of the arguments given as of to Eq. (29) that the restrictions as 

to the smallness of the ‘third’ mass may be partly ameliorated. 

 

If this is done, and it will require through investigations, then a template as to how to reliably simulate 

N bodies interacting, may be a doable problem, but first of all, to do this, it should be seen if the 

classical KAM problem may be generalized beyond its present strictures 

 

And, now for an overall conclusion 

 

We conclude that a worthy application of our techniques is in investigating if restrictions as to the 

KAM results, and restricted small mass of a third body in terms of interaction with two other bodies is 

doable and made more likely via Eq. (29). We argue that Eq. (29) in its limiting characterization may 

allow certain classical 3 body simulations more flexibility than what exist presently. We also leave the 

door open as to other applications of Eq. (29), especially in early universe conditions. 

 

In closing we also refer to two further references which may allow for additional research refinement 

of the NLED paradigm which may allow for good applications of our idea, i.e. [21, 22] which may 

further refine our results and which bear consideration. 
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