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ABSTRACT

Scalar fields are favorite among the possible candidates for the dark energy. Most frequently discussed are those with
degenerate minima at ±φmin. In this paper, a slightly modified two-Higgs doublet model is taken to contain the Higgs
field(s) as the dark energy candidate(s). The model considered has two non-degenerate minima at φ±, instead of one
degenerate minimum at ±φmin. The component fields of one SU(2) doublet (φ1) act as the standard model (SM) Higgs,
while the component fields of the second doublet (φ2) are taken to be the dark energy candidates (lying in the true
vacuum). It is found that one can arrange for late time acceleration (dark energy) by using an SU(2) Higgs doublet,
whose vacuum expectation value is zero, in the quintessential regime.

Introduction
There are three components of the total energy density of the Universe: (a) Non-relativistic matter; (b) Relativistic
matter or radiation; (c) Dark energy. The part (c) is supposed to be causing the current observed accelerated expansion of
the Universe. There are several candidates for the third component: (A) The cosmological constant, Λ1–4; (B) Modified
gravity,5, 6; (C) Scalar field models (e.g. quintessence, k-essence, tachyon field, phantom (ghost) field, dilatonic dark
energy, Chaplygin gas)4, 7–9; (D) Vector fields10–19.

The dynamics of the Universe is described by the Einstein field equations (EFEs) which are

Rµν −
1
2

Rgµν +Λgµν =
8πG
c4 Tµν . (1)

When explaining the accelerated expansion of the Universe from the Cosmological constant, Λ, one must also include
the vacuum energy contribution from Tµν since we know that because of the Lorentz invariance the energy momentum
tensor in the vacuum takes the form

< Tµν >=−ρvacgµν , (2)

and hence the vacuum energy contribution cannot be neglected. On substituting eq. (2) in eq. (1) with simplification eq.
(1) with no matter part can be written as

Rµν −
1
2

Rgµν +Λe f f gµν = 0 (3)

where Λe f f = Λ+
8πG
c4 ρvac. The ρvac contribution from by summing the zero point energies of all normal modes of

some field with mass m to a wave number cutoff Λ̄� m gives a vacuum energy density1

ρvac =
∫

Λ̄

0

4πk2dk
(2π)3

1
2

√
k2 +m2 ≈ Λ̄4

16π2 . (4)

This gives a value of ρvac approximately 2×1071GeV4 where as the observed value of this ρvac is about 10−47GeV4

and mismatching is known as the Cosmological constant problem. The solution to this problem can be though in another



way in which the spontaneous symmetry breaking is responsible for providing the such small value of the observed
vacuum energy density. Here one assumes that the scalar field potential is of the form with its coefficient µ2 being
negative

V (φ) =V0 +µ
2
φ

†
φ +λ

(
φ

†
φ
)2

In this way, the vacuum energy, ρvac =V0−µ4/4λ , with the Cosmological constant, Λ, some how manage to give the
observed effective Cosmological constant. But this method is very vivid and unnatural in constructing the observed
vacuum energy. It has also been shown by Copeland et. al.4 that the scalar field potential which can give rise to
power-law expansion of the Universe are exponential potentials.

Scalar fields were first used by Alan Guth20 to provide an inflationary solution to the horizon and flatness problems,
and Andre Linde21, 22 to resolve the magnetic monopole and domain wall problems (arising from Guth’s inflation) along
with the earlier problems (for inflation see e.g.23). Similarly scalar, vector and tensorial fields can be used to explain the
dark energy as being the dynamical vacuum energy4, 10.

The homogeneous and isotropic Universe is described by the Friedmann-Robertson-Walker (FRW) metric and its
dynamics is described by the Friedmann equations which are

H2 =
8πG

3
ρ− κ

a2 , (5)

ä
a

= −1
6
(
1+3ωe f f

)
ρ , (6)

where a is the scale factor, H = ȧ/a is the Hubble parameter, ρ is the total energy density of the Universe and κ is the
spatial curvature. In deriving the above equations, the barotropic equation of state P = ωρ has been used; P being the
pressure and ω the equation of state parameter. Here, and throughout, Planck units h̄ = c = 1 and (8πG)−1/2 = MP
have been used and MP has been taken to be 1. From eq. (6), we see that ä > 0 (accelerated expansion of the Universe)
when ωe f f <− 1

3 .
Using the law of conservation of energy, it can easily be shown that

ρ ∝ a−3(1+ω) . (7)

Scalar fields are categorized as: (1) Quintessence fields (−1 < ω <−1/3); (2) Phantom fields (ω <−1). When ω =−1
the energy density remains constant as the Universe expands.

The scalar fields generally used to explain accelerated expansion of the Universe are taken to be new fields (with no
connection to Particle Physics whatsoever). However, the introduction of new fields with no experimental basis other
than “explaining” one observed phenomenon is too reminiscent of the pre-relativistic aether. In our opinion, only if
one can exclude fields contained in the standard model, or a minor extension of it, would it be justifiable to introduce
such exotic proposals as phantom or quintessence fields, unless the new proposal simplifies the explanation in the full
detailed calculations.

In this paper, we assume that the present state of the Universe is described by an inert uplifted double well two-Higgs
doublet model in which both doublets lie in their true vacuum, and the vacuum expectation value (VeV) of the second
doublet is zero. The results obtained favor the accelerated expansion of the Universe in the quintessence regime.

Method
Here we discuss the Uplifted double well two-Higgs doublet model (UDW-2HDM). We also discuss the conditions
under which Higgs fields could be considered as dark energy fields.

Uplifted double well two-Higgs double model
The electroweak symmetry in the standard model (SM) of Particle Physics is broken spontaneously by the non-zero
VeV of the Higgs field via Higgs mechanism. The Lagrangian which describes any model in Particle Physics is

L = L SM
g f +LY +LHiggs. (8)
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Here L SM
g f is the SUC(3)⊗SUL(2)⊗UY (1) SM interaction of the fermions and gauge bosons (force carriers), given by

L SM
g f = − 1

4 Gµν Gµν − 1
4WµνW µν − 1

4 Bµν Bµν + ψ̄ i
L ι̇γµ ∇EW

µ ψ i
L + ψ̄ i

R ι̇σ µ ∇EW
µ ψ i

R

+χ̄ i
L ι̇γµ ∇SM

µ χ i
L +Ū i

R ι̇σ µ ∇SM
µ U i

R + D̄i
R ι̇σ µ ∇SM

µ Di
R.

(9)

The Yukawa interaction of fermions with the Higgs represented as LY is given as

LY = −Y u
i j χ̄

i
Lφ̃1U j

R−Y d
i j χ̄

i
Lφ1D j

R−Y e
i jψ̄

i
Lφ1ψ

j
R−h.c. (10)

here ψ i
L are left handed leptons doublets, ψ i

R are right handed leptons singlets, χ i
L are left handed quark doublets, U i

R
and Di

R are the right handed quark singlets. i runs from 1-3. φ is the SM Higgs doublet. The Higgs field Lagrangian,
LHiggs, is

LHiggs = TH −VH , (11)

here, TH is the kinetic term of the Higgs field and VH is the potential of the Higgs field. The kinetic and potential terms
in UDW-2HDM are

TH = (D1µ φ1)
†(D1

µ φ1)+(D2µ φ2)
†(D2

µ φ2)+
[
χ(D1µ φ1)

†(D2
µ φ2)+χ∗(D2µ φ2)

†(D1
µ φ1)

]
, (12)

and

VH = ρ1 exp(Λ1m2
11(φ1−φ10)

†(φ1−φ10))+ρ3 exp
(

1
2

Λ3λ1((φ1−φ10)
†(φ1−φ10))

2
)

+ρ2 exp(Λ2m2
22(φ2−φ20)

†(φ2−φ20))+ρ4 exp
(

1
2

Λ4λ2((φ2−φ20)
†(φ2−φ20))

2
)

+λ3(φ
†
1 φ1)(φ

†
2 φ2)+λ4(φ

†
1 φ2)(φ

†
2 φ1)+

[
m2

12(φ
†
1 φ2) +

λ5

2
(φ †

1 φ2)
2 +λ6(φ

†
1 φ1)(φ

†
1 φ2)

+λ7(φ
†
2 φ2)(φ

†
1 φ2)+h.c.

]
,

(13)

where

D1µ = ∂µ + ι̇
g1

2
σiW i

µ + ι̇
g′1
2

Bµ , D2µ = ∂µ + ι̇
g2

2
σiW i

µ + ι̇
g′2
2

Bµ ,

φi =

[
φ
+
i

ηi + ι̇ χi +νi

]
, φi0 =

[
0
τi

]
and φ

†
i =

[
φ
−
i ηi− ι̇ χi +νi

]
.

The dimensions of the different quantities are [ρi]
−1 = [Λi] = [L]4, [m2

ii] = [L]−2, [φi] = [L]−1 and [λi] = [L]0, where
“L” denotes length. The Higgs fields φ

+
i , φ

−
i , ηi and χi are hermitian (φ±i are charged whereas the others are neutral), νi

is the VeV of the doublet φi, φi0 in the potential is the true minimum of the field φi. Here we also assume that both the
Higgs doublets are coupled with the gauge fields differently. In this way, we can suppress the interaction of dark energy
Higgs with the gauge bosons. The shape of the potential in this model is shown in fig. (1).

Since we want the Higgs field (lying in the false vacuum) to live for not less than the current age of the Universe, a
stable Higgs field is required. This can be achieved by imposing a discrete Z2 symmetry.

There are two types of Z2 symmetry breaking: 1) soft; and 2) hard. When Z2 symmetry is broken by (φ †
i φ j) type

terms then it is said to be softly broken and when Z2 symmetry is broken by (φ †
i φ j)(φ

†
k φl) type terms then Z2 is said to

be hardly broken. The term containing m2
12 describes the soft Z2 symmetry breaking, whereas the terms containing

λ6 and λ7 describe the hard Z2 symmetry breaking. In the absence of these terms along with no cross kinetic term i.e.
χ = 0, the UDW-2HDM’s Higgs Lagrangian has a perfect Z2 symmetry24. There are two Z2 symmetries corresponding
to the UDW-2HDM doublets:

I: φ1 −→ −φ1 , φ2 −→ φ2 ,
φ10 −→ −φ10 , φ20 −→ φ20 ; (14)

II: φ1 −→ φ1 , φ2 −→ −φ2 ,
φ10 −→ φ10 , φ20 −→ −φ20 .

(15)
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Figure 1. The uplifted double well potential.

Minimizing the Higgs potential
The extrema of the potential are found by taking

∂VH

∂φ1

∣∣∣
φ1=〈φ1〉

=
∂VH

∂φ
†
1

∣∣∣
φ

†
1 =
〈

φ
†
1

〉 = 0 and
∂VH

∂φ2

∣∣∣
φ2=〈φ2〉

=
∂VH

∂φ
†
2

∣∣∣
φ

†
2 =
〈

φ
†
2

〉 = 0. (16)

The most general solution of the conditions (16) is

〈φ1〉=
1√
2

(
0
ν1

)
and 〈φ2〉=

1√
2

(
u
ν2

)
.

The first solution of extrema has been taken to be similar to the Higgs vacuum in the SM and the second one is the most
general that could occur. One needs to keep in mind that now ν2 = ν2

1 +
∣∣ν2

2

∣∣+u2, where ν = 1/ 4
√

2GF
2 ≈ 246GeV is

the VeV of the Higgs field in the SM.
If u 6= 0 the non-zero value of u will contribute to the “charged” type dark energy, which has not been observed. To

avoid this, we choose u = 0. From the extrema conditions given by eq. (16), we can determine the values of ν1 and
ν2

25–27, solving eq. (16) for the potential given by eq. (13) leads to

ρ1Λ1m2
11(ν1− τ1)exp

(
Λ1m2

11(ν1− τ1)
2
)
+ρ3Λ3λ1ν1(ν

2
1 − τ2

1 )exp
(

Λ3λ1

2
(ν2

1 − τ2
1 )

2
)

+m2
12
∗
ν2 +(λ3 +λ4 +λ ∗5 )ν1ν2

2 +(λ6 +2λ ∗6 )ν
2
1 ν2 +λ ∗7 ν3

2 = 0,
(17)

ρ2Λ2m2
22(ν2− τ2)exp

(
Λ2m2

22(ν2− τ2)
2
)
+ρ4Λ4λ2ν2(ν

2
2 − τ2

2 )exp
(

Λ4λ2

2
(ν2

2 − τ2
2 )

2
)

+m2
12ν1 +(λ3 +λ4 +λ5)ν

2
1 ν2 +λ6ν3

1 +(2λ7 +λ ∗7 )ν1ν2
2 = 0.

(18)

The solution of the above equations is practically impossible. Renormalizing, truncating the terms to fourth order in
the potential given by eq. (13) and applying the minimization conditions given by eq. (16) we get,

ρ1Λ1m2
11(ν1− τ1)+ρ1Λ2

1m4
11(ν1− τ1)

3 +ρ3Λ3λ1ν1(ν
2
1 − τ2

1 )+m2
12
∗
ν2

+(λ3 +λ4 +λ ∗5 )ν1ν2
2 +(λ6 +2λ ∗6 )ν

2
1 ν2 +λ ∗7 ν3

2 = 0,
(19)
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ρ2Λ2m2
22(ν2− τ2)+ρ2Λ2

2m4
22(ν2− τ2)

3 +ρ4Λ4λ2ν2(ν
2
2 − τ2

2 )+m2
12ν1

+(λ3 +λ4 +λ5)ν
2
1 ν2 +λ6ν3

1 +(2λ7 +λ ∗7 )ν1ν2
2 = 0.

(20)

As discussed before, Z2 symmetry is very important in determining the phenomenology of the theory and with
exact Z2 symmetry the lightest Higgs field is stable, and hence becomes a candidate for dark energy. Imposing the Z2
symmetry24 we have,

χ = 0, Re(m2
12) = Im(m2

12) = 0, Re(λ6) = Im(λ6) = 0, Re(λ7) = Im(λ7) = 0. (21)

Using eqs. (19, 20, 21) and imposing λ3 +λ4 +λ5 = 07 (with λ3 +λ4 +λ5 6= 0 the solution to the VeV contain complex
part) we get four solutions for ν1 and ν2, which are:

ν1 = τ1 , ν2 = τ2 ; (22)

ν1 = τ1 , ν2 =
2m4

22Λ2
2ρ2τ2−λ2Λ4ρ4τ2−

√
Ξ2

2
(
m4

22Λ2
2ρ2 +λ2Λ4ρ4

) ; (23)

ν1 =
2m4

11Λ2
1ρ1τ1−λ1Λ3ρ3τ1−

√
Ξ1

2
(
m4

11Λ2
1ρ1 +λ1Λ3ρ3

) , ν2 = τ2 ; (24)

ν1 =
2m4

11Λ2
1ρ1τ1−λ1Λ3ρ3τ1−

√
Ξ1

2
(
m4

11Λ2
1ρ1 +λ1Λ3ρ3

) , ν2 =
2m4

22Λ2
2ρ2τ2−λ2Λ4ρ4τ2−

√
Ξ2

2
(
m4

22Λ2
2ρ2 +λ2Λ4ρ4

) ; (25)

where
Ξ1 =−4m6

11Λ
3
1ρ

2
1 −4m2

11λ1Λ1Λ3ρ1ρ3−8m4
11λ1Λ

2
1Λ3ρ1ρ3τ

2
1 +λ

2
1 Λ

2
3ρ

2
3 τ

2
1 ,

and
Ξ2 =−4m6

22Λ
3
2ρ

2
2 −4m2

22λ2Λ2Λ4ρ2ρ4−8m4
22λ2Λ

2
2Λ4ρ2ρ4τ

2
2 +λ

2
2 Λ

2
4ρ

2
4 τ

2
2 .

The Higgs doublets, when the vacuum is given by eq. (22), are

φ1 =

[
φ
+
1

η1 + ι̇ χ1 + τ1

]
, φ2 =

[
φ
+
2

η2 + ι̇ χ2 + τ2

]
. (26)

If we choose τ2 = 0 then the fields φ
±
1 and χ1 become Goldstone bosons and the other fields become physical. With

τ2 = 0, the Yukawa interactions are described by the interaction of φ1 with fermions (as φ2 does not couple to fermions
but appears in loops). The Higgs and Yukawa Lagrangian in this case violate the Z2 symmetry given by eq. (14) but
respect that given by eq. (15) only when τ2 = 0. Thus, parity in φ2 is conserved. This makes the lightest field of φ2
stable. Without this stability, we would have a model for accelerated expanding Universe for a limited time depending
upon the decay width (life time) of the dark energy field(s), because if field(s) can decay then it ceases to provide
accelerated expansion after its decay to the other fields. It would then require fine tuning to make it stable enough till
the current age of the Universe and then to “switch off”. The masses of the fields in this vacuum are

m2
η1

= ρ1Λ1m2
11 ,

m2
η2

= ρ2Λ2m2
22 +

ν2

2
(λ3 +λ4 +λ5) ,

m2
χ2

= ρ2Λ2m2
22 +

ν2

2
(λ3 +λ4−λ5) ,

m2
φ
±
2
= 2ρ2Λ2m2

22 +λ3ν2 .

(27)

Results
Here we show that new CP odd and even Higgs field(s) can be give rise to an accelerated expanding Universe.
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Higgs fields as dark energy
The Universe is homogeneous and isotropic at the cosmological scale, and its dynamics is described by the Friedmann
equations given by eq. (5) and eq. (6). Equation (6) says that accelerated expansion will occur when ωe f f <− 1

3 where
ωe f f = ΩDEωDE +ΩRωR +ΩMωM . For the field φ2 to be the dark energy field, it must bring ωe f f <− 1

3 within the
history of the Universe (in fact just now Z ≈ 0.32 when ΩDE = 0.7 and ΩNR = 0.3). For this purpose we need to solve
the Euler-Lagrange equations, which are

∂µ

(
∂ (
√
−gLHiggs)

∂ (∂µ ψi)

)
−

∂ (
√
−gLHiggs)

∂ψi
= 0, (28)

where ψi are different fields of doublets φ1 and φ2.
The Euler-Lagrange equations of motion in FRW Universe (

√
−g = a(t)3) for the fields φ

±
2 , η2 and χ2 in this

model are

η̈2 +3
ȧ
a

η̇2 +
1
2

η2

(
ν2 (λ3 +λ4 +λ5)+2m2

22Λ2ρ2em2
22Λ2(χ2

2+η2
2+2φ c

2
2)/2

+λ2Λ4ρ4eλ2Λ4(χ2
2+η2

2+2φ c
2

2)2/8 (
χ2

2 +2φ c
2

2
))

+
1
2

λ2Λ4ρ4eλ2Λ4(χ2
2+η2

2+2φ c
2

2)2/8
η2

3 = 0,
(29)

χ̈2 +3
ȧ
a

χ̇2 +
1
2

χ2

(
ν2 (λ3 +λ4−λ5)+2m2

22Λ2ρ2em2
22Λ2(χ2

2+η2
2+2φ c

2
2)/2

+λ2Λ4ρ4eλ2Λ4(χ2
2+η2

2+2φ c
2

2)2/8 (
η2

2 +2φ c
2

2
))

+
1
2

λ2Λ4ρ4eλ2Λ4(χ2
2+η2

2+2φ c
2

2)2/8
χ2

3 = 0,
(30)

φ̈ c
2 +3

ȧ
a

φ̇ c
2 + φ c

2

(
ν2λ3 +2m2

22Λ2ρ2em2
22Λ2(χ2

2+η2
2+2φ c

2
2)/2

+ λ2Λ4ρ4eλ2Λ4(χ2
2+η2

2+2φ c
2

2)2/8 (
χ2

2 +η2
2 +2φ c

2
2
))

= 0,
(31)

where c is + or −. The energy density and pressure after expansion of UDW-2HDM Higgs Lagrangian for physical
fields become

ρDE/PDE =
1
2

χ̇2
2 +

1
2

η̇2
2 +

1
2

φ̇ c
2

2±
(

ρ1 +ρ3 +
1
2

ν2λ3φ c
2

2 +
1
4

ν2 (λ3 +λ4 +λ5)η2
2

+
1
4

ν2 (λ3 +λ4−λ5)χ2
2 +ρ2em2

22Λ2(χ2
2+η2

2+2φ c
2

2)/2

+ρ4eλ2Λ4(χ2
4+2χ2

2η2
2+η2

4+4χ2
2φ c

2
2+4η2

2φ c
2

2+4φ c
2

4)/8
)
.

(32)

For the cosmological evolution of the fields η2, χ2 and φ c
2 , the equations of motion (given by eqs. (29, 30, 31)) are

solved with the Friedmann equations numerically in the flat Universe (κ = 0). The initial conditions used are η2ini = MP,
χ2ini = MP, φ c

2 ini = 0, η̇2ini = 0, χ̇2ini = 0 and φ̇ c
2 ini = 0. The masses of the Higgs bosons in the analysis are taken to be

mη2 = mχ2 = 1.0247×10−59 GeV, to set the evolution of the energy densities as observed. Note that after imposing Z2
symmetry there are five parameters which determine the masses of Higgs fields. With mη1 = mHSM = 125.7GeV we have
only one equations to determine the parameters values. Constraints coming from tree level MSSM has not been imposed.
The Higgs fields masses in this analysis were calculated by eq. (27) by imposing mη1 = mHSM = 125.7GeV and some
the arbitrary choice of parameters since there was only one equations to determine all unknown free parameters. One
important thing in our model is that the mass of the charged Higgs becomes arbitrary and thus any value of the charged
Higgs fields will suffice.

The solution of the eqs. (29, 30, 31) along with Friedmann equations is shown below in the graphs.
During the initial stages Z� 1, the evolution of the Higgs fields, η2, χ2 and φ

±
2 , is frozen, as shown in fig. (2) and

acts as a negligibly small vacuum energy component with ω =−1. As time proceeds the Higgs fields begin to evolve
towards the minimum of the potential, the energy density in the Higgs fields starts to dominate cosmologically (on
the Hubble scale). During the evolution, ωHiggs starts to increase and becomes >−1 as shown in fig. (3). In the very
late (future) Universe (Z� 0), the fields come to rest at the minimum of the potential and a period with ω =−1 is

6



Figure 2. Higgs field as a function of redshift.

Figure 3. Effective equation of state parameter for Higgs fields ωHiggs, as seen it starts with −1 then evolves towards
quintessence regime after large enough time it comes back at −1.

reachieved to give an accelerating Universe similar to a pure cosmological constant. Since ωHiggs ≯−1/3 at any time
in the evolution, after ωe f f becomes <−1/3, we get an exponentially accelerating Universe.

As discussed before, the Higgs field stability is provided by imposing Z2 symmetry. The lightest Higgs fields, η2
and χ2, do not decay into any other Higgs field (since these fields are lighter than the SM-like and charged Higgs) or
into fermions (since they do not couple to them at tree level).

The ωe f f in the fig. (4) starts from ≈ 0.167 (set by initial conditions ΩHiggsint = 0 and ΩNRint = ΩRint = 0.5; NR:
non-relativistic matter and R: relativistic matter) and decreases as the relativistic matter’s energy density decreases
(shown in fig. (4) for ωe f f and fig. (5) for relic densities). Initially, the relic density of non-relativistic matter increases
while the relic density of relativistic matter decreases. The relic density of dark energy field approximately remains
negligible in the initial stage of evolution. The time period when non-relativistic matter dominates with its relic density
ΩNR ≈ 1 is when the Universe decelerates at the highest rate as non-relativistic matter domination pulls things inwards
more than the outwards Higgs negative pressure. When ωe f f = 0 the weighted negative pressure of dark energy fields
and positive (inwards) pressure of non-relativistic matter cancel each other. After that ωe f f starts to decrease as the
non-relativistic energy density decreases and the Higgs relic energy density increases (shown in fig. (5)). From this
time on the Higgs negative pressure dominates and ωe f f eventually settles down to −1. Note that the initial conditions
for the charged field took the dark energy (vacuum) not to be charged.
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Figure 4. Effective equation of state parameter ωe f f = ΩDEωDE +ΩRωR +ΩMωM .

Figure 5. Relic densities of different components as a function of time.

Decay(s) of Higgs field(s)

At the tree level the doublet φ2 in inert UDW-2HDM discussed above (whose component fields are the candidate for
dark energy) is only coupled to the doublet φ1 which acts in an identical way as SM Higgs field.

The interaction Lagrangian of Higgs fields of doublet φ2 with Higgs fields of doublet φ1 and gauge bosons (extracted

8



from eq. (11)) is

LI =
ν

2
η1η2

2 (λ3 +λ4 +λ5)+
ν

2
η1χ2

2 (λ3 +λ4−λ5)+νλ3η1φ c
2

2 +
1
4

η1
2η2

2 (λ3 +λ4 +λ5)

+
1
4

η1
2χ2

2 (λ3 +λ4−λ5)+
1
2

η1
2φ c

2
2λ3 +

1
4

η2
2χ2

2
(
m4

22Λ2
2ρ2 +λ2Λ4ρ4

)
+

1
2

η2
2φ c

2
2
(
m4

22Λ2
2ρ2 +λ2Λ4ρ4

)
+

1
2

χ2
2φ c

2
2
(
m4

22Λ2
2ρ2 +λ2Λ4ρ4

)
+

g2
2g′2

2

(g′2
2 +g2

2)
φ
+
2 φ
−
2 A2

µ +
(g′2

2 +g2
2)

8
η2

2 Z2
µ +

(g′2
2 +g2

2)

8
χ2

2 Z2
µ +

(g2
2−g′2

2)2

4(g′22 +g2
2)

φ
+
2 φ
−
2 Z2

µ

+
g2g′2(g

2
2−g′2

2)

(g′2
2 +g2

2)
φ
+
2 φ
−
2 Aµ Zµ +

g2
2

4
W−µW+

µ(η
2
2 +χ2

2 +2φ
+
2 φ
−
2 )

+
g2

2g′2

2
√
(g′2

2 +g2
2)

η2Aµ(φ
+
2 W−µ +φ

−
2 W+

µ)+ i
g2

2g′2

2
√
(g′2

2 +g2
2)

χ2Aµ(φ
−
2 W+

µ −φ
+
2 W−µ)

− g2g′2
2

2
√
(g′2

2 +g2
2)

η2Zµ(φ
+
2 W−µ +φ

−
2 W+

µ)− i
g2g′2

2

2
√
(g′2

2 +g2
2)

χ2Zµ(φ
−
2 W+

µ −φ
+
2 W−µ).

(33)

To suppress the interaction of Higgs fields, η2, χ2 and φ
±
2 , with the gauge bosons the idea is that the SU(2) doublet φ2

is very weakly (different than φ1) coupled with the gauge bosons, thus we have g2� g1 and g′2� g′1.

The decay width of the Higgs to a pair of Higgs scalars, using only the on-shell width, is given by25, 26

Γ(Hi −→ H jHk) = (2−δ jk)mHi

|CHiH jHk |2

32π

√√√√ f

(
1,

m2
H j

m2
Hi

,
m2

Hk

m2
Hi

)
, (34)

where

f

(
1,

m2
H j

m2
Hi

,
m2

Hk

m2
Hi

)
=

(
1−

m2
H j

m2
Hi

−
m2

Hk

m2
Hi

)2

−4
m2

H j

m2
Hi

m2
Hk

m2
Hi

,

and CHiH jHk is the coupling of different Higgs bosons Hi, H j and Hk.

From eq. (33), Cη1χ2χ2 =
1
2

ν(λ3 +λ4−λ5), Cη1η2η2 =
1
2

ν(λ3 +λ4 +λ5) = and C
η1φ

+
2 φ
−
2
= λ3ν .

The decay rates of η1 to η2η2, χ2χ2, φ
−
2 φ

+
2 for the masses used in the cosmological evolution determination are

zero. The decay rates of the SM-like Higgs boson are given in the graph below as a function of masses mη2 , mχ2 , m
φ
±
2

(on one axis) and their (η2, χ2, φ
±
2 ) couplings with the SM- like Higgs (on the other axis),
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Figure 6. Decay rates for η1 −→ xx.

It should also be mentioned that the total decay width of the SM-like Higgs boson here is well within the bounds of
mass resolution≈ 12×10−3GeV of LHC28 for the values of the masses used in the cosmological evolution of the Higgs
fields. One should also mention that the SM prediction of total decay width for the Higgs boson is 4.21×10−3GeV
with mass 126GeV29 and is 4.07×10−3GeV with mass 125GeV28. In this model, we get three more decay channels of
the SM-like Higgs, to the other Higgs bosons pair.

Conclusion and Discussion
Scalar fields are among the possible candidates for the observed accelerated expansion of the Universe. In this article,
we have argued that the Particle Physics developed so far must have something in, or minimally beyond, the SM which
will explain the observed accelerated expansion of the Universe and hence will serve as a dark energy candidate. Here
we assumed that dark energy is actually some scalar field which is present as the Higgs in a model where the potential
has the non-degenerate vacua, we called this model uplifted double well two-Higgs doublet model (UDW-2HDM).

We found that if the present Universe is described by the true vacua of UDW-2HDM then the component fields
of the second doublet φ2 (which acts as the inert doublet) can be one possible candidate for the dark energy. As the
present contribution of the dark energy to the critical energy density is about 0.7, this value is obtained by taking the
mass of the CP-even field’s mass small (O(10−59)GeV). The most important thing is that with the initial conditions set,
the mass of the charged (φ±2 ) field becomes arbitrary. Hence this model will fit for any value of mass of φ

±
2 . One also

needs to keep in mind that the values of masses were chosen arbitrarily so as to get dark energy relic density ≈ 0.7.
Changing the values of the masses, the relic density does not change much.

It should also be mentioned that if we remove the Z2 symmetry, the second Higgs doublet does not remain inert.
Thus in the case of Z2 violation (soft or hard), the CP-even Higgs fields will mix by an angle β . In that case a new
parameter (β ) will arise in the theory. Obtaining a dark energy candidate in that model will require fine tuning in the
Yukawa interactions in such a way that either the dark energy field does not couple or couple very weakly with the
fermions.

Since the inflation and late time acceleration (from a dynamical field) are not very different, one usually talks
about the inflaton field decay at the end of inflation into another (dark) field called dark radiation (since it does not
couple to SM that is why it is called dark radiation) which may then govern the interaction between dark matter and

10



normal matter or couple to the dark matter. If this dark radiation is a massive Planck-coupled particle which exist
post-inflation, then these particles will inevitably dominate the universe energy density of the Unvierse later. Since
these particles will dominate the energy density of the Unvierse, they can be possible candidate of current accelerated
expansion of the Universe. The interesting fact about this dark radiation is that it decouples from the SM sector at the
end of inflation. There are quite a few observation that this dark radiation could actually exist30–33. This fact introduces
stringent constraints on models involving the dark radiation. The usual talked dark radiation field is the sterile neutrino.
In these models, one tries to investigate the effective number of neutrino species Ne f f where they rule in or rule out
Ne f f ≈ 4. In our case here, we do not intend to present any model of inflation nor dark radiation. But if our Higgs field
gets coupled to the dark matter after inflation this could introduce constraints on our model. This should be investigated
in the future.
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