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Abstract

In this paper, a new kind of inflation model was used, which has the
interesting property that its perturbation equation of motion gets a
correction of k4, due to the non-linearity of the kinetic term. Nonethe-
less, the scale-invariance of the power spectrum remains valid, both
in large-k and small-k limits. we investigate in detail the perturbed
parameters including slow-roll parameters, number of e-folds, spectral
index, the index running and the tensor/scalar ratio in this model,
especially on the potential-driven case. The results are compared to
the current observational data. In this case, we also discuss the tensor
spectrum, which is expected to be tested by the future observations
on primordial gravitational waves.
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1 Introduction

In 1981, Guth [1] invented the term “cosmological inflation”, a compelling
research aspect in modern cosmology. Inflation is an additional idea in hot
big-bang (HBB) theory, which is applied on very initial stage of the cosmic
evolution. It is supposed that scale of inflation to be long since over and the
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standard expansion restored, in order to maintain the significant successes,
such as the cosmic microwave background radiation (CMBR) and nucleosyn-
thesis. Regardless of all of its triumphs, there are some unsatisfactory issues
with HBB theory which cultivated inflation [2].

The first issue is the “flatness problem” (an easiest one to understand):
for flat universe, Ω = 1 on the time scale (where Ω = ρ

ρc
; ρc is the criti-

cal density). In standard big-bang model, the curvature term (aH)2 (a, H
be the scale factor and Hubble parameter) always a decreasing function of
time leading to Ω(t) different from unity due to cosmic expansion. However,
according to recent observations, the value of Ω(t) is near to unity, thus it
must be same (very close to one) in the early-time. For example, its value at
Planck time is “|Ω(tPl)| < O(10−64)” while “|Ω(tnucleo)| < O(10−16)” (dur-
ing nucleosynthesis). These values represent that there was a need of highly
fine-tuning of “initial conditions”. The inaccurate choice of “initial condi-
tions” leads to the cosmos which either soon expands before the formation
of structure or quickly collapses. This dubbed as “flatness problem” [3].

The “horizon problem” illustrate that “Why the temperature of CMBR
appears the same in all directions?” In east and west directions, the exactly
same temperature of CMBR is detected, while the radiation coming from
the east and west are detached by “28 billion light years”. As we know
that information always transformed with a speed less than the “speed of
light”, hence neither the radiation detected from two directions of the the
universe could be in thermal contact nor the regions ever have been in link.
The only possibility for two regions to be in thermal equilibrium is that
they must be enough close to communicate with each other. Then, how
thermal equilibrium between two regions was attained if there was no causal
connection? [3].

The mechanism of inflation is proposed to resolve the standard short-
comings of HBB model. “Stripped to its bare bones”, inflation is an era of
the cosmic evolution where the scale factor a(t) was growing exponentially
(ä < 0). The acceleration equation immediately implies that “ρ + 3P < 0”,
since density is always assumed positive, so to satisfy the inequality, pressure
should be negative (P < −ρ

3
). Fortunately, the symmetry breaking (concept

of modern particle physics) give ways through which this negative pressure
can be achieved. A cosmos possessing (Λ) (the cosmological constant, rep-
resenting by P = −ρ) is one of the typical example of inflationary cosmic
expansion. After a passage of time, the energy of Λ decayed into ordinary
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matter which leads to a “graceful exit” from inflation and again preserve
the HBB model. Unfortunately, Λ is proved to be a very ad hoc technique.
A successful inflationary model must possesses a feasible hypothesis for the
source of Λ and a “graceful exit” from the inflation [4].

The “phase transitions” is a basic idea to obtain inflation. This is es-
pecially a dramatic event in the cosmic time-line, a time when universe re-
ally changes its properties. It is fact that the current cosmos have passed
through a series of phase transitions as it cooled down. A curious form of
matter named scalar field is consider to be responsible for the cosmic phase
transitions. It possesses negative pressure (an effective Λ) and satisfy the
condition (p + 3p < 0), necessary to attain inflation. At the end of phase
evolution, the inflaton (scalar particle which produced inflation) decomposed
and the inflation terminates, hopefully having attained the required cosmic
expansion (by a factor of 1027 or more).

Inflation resolves the “flatness problem” as: “consider a balloon being
very quickly blown up (say to the size of the sun), its surface would then look
flat to us. The crucial difference between inflation and the standard HBB
model is that the size of the region of the observable universe (given roughly
by the “Hubble length” (cH−l; H−l be the age of the universe and c be the
maximum speed), does not change while this happens. So, soon you are
unable to notice the curvature of the surface. While in the big bang scenario
the distance you can see increases very rapidly than the balloon expands,
so you can observe more of the curvature as time goes by.” The solution
of the “horizon problem” can be described in a precise way as: “inflation
enlarges the size of a portion of the cosmos, while keeping its peculiar scale
(the Hubble scale) fixed. This statement yields that a small patch of the
universe, will be small enough to obtain thermal contact before inflation, can
expand to be much larger than the size of our presently observable universe.
Then the CMBR coming from opposite sides of the sky really are at the same
temperature because they were once in equilibrium. Equally, this provides
the opportunity to generate irregularities in the universe which can lead to
structure formation” [4].

The oscillatory (cyclic) universe have a long past in the field of cosmology
[5]. Formerly, one of their basic interest was that the initial conditions could
in principle be evaded. However, a detailed analysis of such models affirmed
severe problems in their development in the framework of general relativity
(GR). Aside from entropy constraints that reduced the number of bounces
in the early time, the basic difficulty is the classical treatment when any
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bounce is singular, thereby leading to the failure of GR. Current progress in
M-theory inspired braneworld models have reborn interest in cyclic (oscilla-
tory) universe, despite the fact, problems still attached with these models in
constructing a successful analysis of the bounce [6]. An oscillating universe
that subsequently underwent an inflationary cosmic expansion after a finite
number of cycles has also been discussed [7]. Yet, a physical method to bring
about the bounces was not implemented in this model.

Damour and Mukhanov [8] are the pioneers of “oscillating inflation”.
They proposed that, after the slow-roll, inflation may lasts in rapid coherent
oscillation during the reheating regime. Liddle and Mazumder [9] formulated
the corresponding “number of e-folds”. The decay of scalar fields in the
oscillations to inflaton was also discussed briefly by Bartruma et al. [10]. The
adiabatic perturbation in the oscillatory inflation are investigated in [11]. The
authors in [12] extended the work of Damour and Mukhanov [8], by taking
a coupling between the Ricci scalar curvature and inflaton. An important
form of the potential, which is needed to end the oscillatory inflation, was
formulated in [13]. The rapid oscillatory phase gives a less “number of e-
folds”, so it is not possible to avoid the slow-roll phase during this formalism.
Because of few “number of e-folds”, a deep analysis of the growth of quantum
fluctuations has not been executed. To solve this difficulty, we can assume
a “non-minimal derivative coupling model”. A mess of literature exists to
study the cosmological aspects of this model [14].

The oscillatory inflation with “non-minimal kinetic coupling” is presented
in [15] which solves the issue of few number of e-folds coming in [8] (“non-
minimal derivative coupling model”) as it increases the “number of e-folds”
during high-friction era. However, it is not clear from this scenario how re-
heating occurs or the universe becomes radiation dominated after the end
of inflation. Sadjadi and Goodarzi [15] analyzed the compatibility of the
perturbed parameters like scalar(tensor) perturbations, power spectra and
spectral index for scalar(tensor) modes in oscillatory inflation with Planck
2013 data. The isotropic universe is just an perfect realization to the cosmos
we observe as it ignores all the structure and other observed anisotropies,
e.g., in the CMB temperature [16]. One of the great triumphs of inflation is
to have a naturally embedded mechanism to account for these anisotropies.
Sharif and Saleem [17] studied warm vector inflation in “locally rotationally
symmetric Bianchi type I” (LRS BI) universe model and verified its compat-
ibility with WMAP7 data.

Motivated by the combined work of Sadjadi and Goodarzi [15], I have
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discussed inflationary scenario during rapid oscillation of a scalar field in
non-minimal derivative coupling model. To this end, the framework of LRS
BI universe model is used. The paper is organized as follows. The basic
formalism of oscillatory inflation in the background of LRS BI universe model
is given in section 2. Section 3 deals with cosmological perturbations during
minimal and non-minimal cases. I evaluate explicit expressions for perturbed
parameters and analyzed them through graphical trajectories by constraining
the model parameters with Planck 2015 observations. Finally, the results are
concluded in the last section.

2 Formalism of Anisotropic oscillatory Infla-

tion

In the past three decades, various inflationary models have been proposed,
where in many of them inflation is driven by a canonical scalar field (φ),
rolling slowly in an almost flat potential. Higgs boson is considered to be
a natural candidate for inflaton [18]. Inspired by this idea, Germani and
Kehagias [19] introduced a non-minimal coupling between kinetic term of φ
and the Einstein tensor (Gµν), tried to consider the inflaton as the Higgs
boson, without violating the unitarity bound. This model is specified by the
following action

S =

∫ (
M2

P

2
R − 1

2
∆µν∂µφ∂νφ − V (φ)

)√
−gd4x,

where ∆µν = gµν− 1
M2 G

µν (M be a coupling constant with dimension of mass,
Gµν = Rµν − 1

2
Rgµν) and MP = 2.435×1018GeV is the reduced Planck mass.

I have considered the gravitational enhanced friction model in the framework
of LRS BI model. The model is represented by the following line element

ds2 = −dt2 + a2(t)dx2 + b2(t)(dy2 + dz2),

with a(t), b(t) are the scale factors along x-axis and (y, z)-axis, respectively.
This metric can be transformed in the following form using a linear relation-
ship a = bm, m 6= 1 [20]

ds2 = −dt2 + b2m(t)dx2 + b2(t)(dy2 + dz2).
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The equation of motion for inflaton is given as(
1 + (m + 2)

H2
2

M2

)
φ̈ + (m + 2)H2

(
1 + (m + 2)

H2
2

M2
+ (m + 2)

2Ḣ2

3M2

)
φ̇

= −V ′(φ), (1)

where H2 = ḃ
b
, V (φ) are the directional Hubble parameter and the effective

potential, respectively. Dot and prime represent the derivative with respect
to time and scalar field. The energy density (ρφ) and the pressure (Pφ) for
homogeneous and anisotropic scalar field can be expressed as, respectively

ρφ =

(
1 + (m + 2)2 H2

2

M2

)
φ̇2

2
+ V (φ),

Pφ =

(
1 − (m + 2)

H2
2

M2
− (m + 2)

2Ḣ2

3M2

)
φ̇2

2
− 2(m + 2)

3M2
φ̇φ̈ − V (φ).

(2)

The dynamics of anisotropic oscillatory inflation is described by the evolution
equation given by

H2
2 =

1

(1 + 2m)M2
P

ρφ. (3)

Here, I consider the rapid oscillatory solution for φ, with both time de-
pendent amplitude Φ(t) (the highest point of oscillation at which φ̇ = 0) and
frequency ω(t) = 1

T (t)
, where T (t) (the period of oscillation) is defined as

T = 2

∫ φ

−φ

dφ

φ̇
. (4)

The rapid oscillation phase obeys the following conditions

H2(t) ¿
1

T (t)
; |Ḣ2

H2

| ¿ 1

T (t)
, (5)

implying that the directional Hubble parameter changes insignificantly dur-
ing one oscillation (i.e., H2(t

′) ≈ H2(t) for t ≤ t′ ≤ t + T (t)). Equations
(3) and (5) together yield that similar to H2, ρφ also remains approximately
constant during one period. We take the constant value of inflaton density
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at the amplitude, Φ (where φ̇ ||φ|=Φ= 0). Therefore ρφ during one oscillation
can be expressed in terms of V (φ) as ρφ = V (φ) at the corresponding Φ [21].

Therefore, for a power law potential, I expect that | φ̇
φ
| ¿ 1

T
. To elucidate

more this subject, the rapid oscillating scalar field is depicted numerically
using Eqs.(1)-(3) for a quadratic potential, showing that the amplitude of
oscillation changes very slowly during one oscillation. Also in Fig. 1, the
oscillation of the scalar field for the potential V (φ) = λ|φ|q is numerically
shown for q ∈ (−2,∞) (the reason for this choice will be revealed when we
will determine our parameters from astrophysical data in the third section).

The adiabatic index (γ) is related with equation of state (EoS) parameter

(w =
Pφ

ρφ
) as w = w + 1. In the rapid oscillation phase, it can be calculated

using Eqs.(3), (4) and the expression ρφ = V (φ) as follows

γ =
〈Pφ + ρφ〉

〈ρφ〉
=

1

〈ρφ〉

[(
1 +

(m + 2)2H2
2

3M2

)
〈φ̇2〉 − d

dt

(
(m + 2)H2φ̇

2

3M2

)]
,

=

(
1 +

(m + 2)2H2
2

3M2

)
〈φ̇2〉
〈ρφ〉

=
2
(
1 +

(m+2)2H2
2

3M2

)
(
1 +

(m+2)2H2
2

M2

) 〈ρφ − V (φ)〉
〈ρφ〉

,

=
2
(
1 +

(m+2)2H2
2

3M2

)
(
1 +

(m+2)2H2
2

M2

)
V (Φ)

∫ φ

−φ

√
V (Φ) − V (φ)∫ φ

−φ
dφ√

V (Φ)−V (φ)dφ

, (6)

where the bracket 〈· · · 〉 =
∫ t+T

t ···dt′

T
denotes the time averaging. To obtain

above equation, it is taken into account the fact that φ̇ vanishes at | φ |= Φ.
Using power law potentials of the form V (φ) = λφq (λ ∈ R), one can easily
obtained the average adiabatic index as

γ =
2q

q + 2

(
1 +

(m+2)2H2
2

3M2

1 +
(m+2)2H2

2

M2

)
, (7)

where q is a dimensionless real parameter, while the limit q → 0, gives a
logarithmic potential. In the minimal coupling case (M → ∞), the adiabatic

index reduced to γ = 2q
q+2

. In the high friction regime, where
H2

2

M2 À 1 ⇒ γ =
2q

3q+6
.

The average rate of change of ρφ is given as

〈ρ̇φ〉 = lim
T→0

ρφ(t + T ) − ρφ(t)

T
' ρ̇φ. (8)
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By taking the average of the continuity equation, we obtain

〈ρ̇φ + (m + 2)H2(ρφ + Pφ)〉 = ρ̇φ + (m + 2)H2γρφ = 0, (9)

where γ is given in Eq.(6). For constant γ, the Eqs.(3) and (9) can be solved

analytically. For the situation
H2

2

M2 À 1, the analytical solutions for ρφ, b(t)
and H2(t) are as follows, respectively

ρφ ∝ b−(m+2)γ, b ∝ t2/(m+2)γ, H2 =
2

(m + 2)γt
. (10)

Next, I restrict the work to the high friction regime to find out the ana-
lytical solution of the model. In the case of power law potential, the period
is calculated by the following formula

T = 2

∫ Φ

−Φ

dφ

φ̇
,

= 2

√
(m + 2)H2

2

2M2

∫ Φ

−Φ

1√
ρφ − V (φ)

dφ,

= 2

√
(m + 2)H2

2

2M2

∫ Φ

−Φ

1√
λΦq − λφq

dφ,

= 2

√
π(m + 2)

2M2λ

Γ(1
q
)

qΓ( q+2
2q

)
H2Φ

2−q
2 ,

=
2

MMp

√
π(m + 2)

2(1 + 2m)

Γ(1
q
)

qΓ( q+2
2q

)
Φ, (11)

where H2 =
√

λ
(1+2m)

Φ
q
2

Mp
. The condition, H2T ¿ 1, can be rewritten in terms

of inflaton using above two expressions as

Φ
q+2
2 ¿

MM2
p (1 + 2m)q√

2πλ(m + 2)

Γ( q+2
2q

)

Γ(1
q
)

, (12)

where the scale M present in the above expression reduces the scale of φ as
compared to the minimal case, which gives

Φ ¿
√

(1 + 2m)q√
2π(m + 2)

Γ( q+2
2q

)

Γ(1
q
)

Mp. (13)
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Figure 1: (left) The behavior of φ
q+2
2 versus q; (right) f versus q are plotted

for m = 1.5 (red); m = 2.5 (green); m = 10 (blue).

Therefore, the evaluated solution must be valid in the domain of Eq.(12)
which specifies a bound for H2 and consequently for ρφ during rapid oscilla-
tion. In order to check, either the inequality given in Eq.(12) holds or not,

we have plotted Fig.1. The left term, Φ
q+2
2 and expression on right hand

side (say f) of Eq.(12) are plotted versus q, for specified values of m, in the
left and right panel of Fig.1, respectively. It is very much clear from the
comparison of left and right graph of Fig.1 that the value of Φ

q+2
2 is much

less than the expression f for q < 2 and m > 1.
The slow-roll conditions, φ̈ ¿ (m + 2)H2φ̇ and ρφ ≈ V (φ) together with

the expression of ρφ given in the first equation of Eq.(2) generates the fol-
lowing inequality (

1 +
(m + 2)2H2

2

M2

)
φ̇2

2
¿ V (φ). (14)

In high friction regime (
H2

2

M2 À 1), all the above mentioned conditions are

satisfied when φq+2 À q2M2M4
p

λ
(opposite to Eq.(12)) holds. Equation (14)

leads to
(m + 2)2H2

2

2M2
φ̇2 ¿ V (φ) ∼ (1 + 2m)M2

p H2
2 , (15)

resulting that

φ̇2 ¿ 2(1 + 2m)

(m + 2)2
M2M2

p . (16)

While during quasi periodic regime, Eqs.(3) and (6) produce the expression
〈φ̇2〉 ≈ γM2M2

p .

9



Inflation takes place when b̈ > 0 or equivalently γ < 2
3
, putting in the

expression of γ, I can fix a range of q ∈ (−2,∞). While during the minimal
case (γ = 2q

q+2
), inflation occurs only for the short interval q ∈ (−2, 1). As

already mentioned that the inflation continues as long as γ < 2
3
, then fourth

equality of Eq.(6) produces(
1 +

(m+2)2H2
2

3M2

1 +
(m+2)2H2

2

M2

)
〈ρφ − V (φ)〉 <

1

3
〈ρφ〉. (17)

The above expression leads to constraint the potential in high friction and
minimal regimes as, respectively

H2
2

M2
À 1 ⇒ 〈V (φ)〉 À 0,

H2
2

M2
→ 0 ⇒ 〈V (φ)〉 >

2

3
〈ρ(φ)〉.

Inflation ends also for more complicated potential such as the potential sug-
gested by Damour-Mukhanov [8]

V (φ) = ν

((
φ2

φ2
c

+ 1

) q
2

− d

)
, (18)

where d > 0 is a dimensionless real number while ν, φc are real parameters
with dimensions [mass]4 and [mass], respectively. For φ À φc, the above
potential reduced to simple power law potential.

The average potential can be evaluated by the following formula [22]

〈V (φ)〉 =

∫ Φ

−Φ
V (φ)

φ̇
dφ∫ Φ

−Φ
dφ

φ̇

,

leads to find that the inflation continues as long as
∫ Φ

−Φ
V (φ)dφ > 0. For the

potential, given in Eq.(18), we have∫ 1

−1

((b2χ2 + 1)
q
2 − d)dχ > 0, (19)

here, b = Φ
φc

and χ = φ
Φ
. The above equation results in that the inflation

continues whenever d < g(b, q), where

g(b, q) =
G(b, q)

2bΓ( q+3
2

)(1 + q)Γ(− q
2
)
, (20)

G(b, q) = −π
3
2 (q + 1)sec(

πq

2
)2F1(−

q

2
;−1 + q

2
;
1 − q

2
;−b−2)Γ(−q

2
)Γ(−q + 3

2
),
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Figure 2: g(b, q) versus q: for b = 1 (red); b = 5 (green); b = 10 (blue).

where 2F1 is the Gauss hypergeometric function. When this inequality is
violated (such that d = g(bend, q) and d > g(b(t > tend), q)), inflation ceases
at tend. The graphical analysis of the function is shown in Fig. 2 for three
different values of b = 1, 5, 10. It is observed that g(b, q) has an increasing
behavior for all values of b > 0 in the range q ∈ (−∞, 1) (in agreement with
the recent values of the parameters evaluate in the next section). The point
of intersection of the three curves is (1, 0), so inflation ends for d > 1 and
d ' 1 (φ ∼ φc).

The number of e-folds (N ) from a specific time (t∗) until the end of
inflation (tend) can be defined as [9]

N = ln
bendH2end

b∗H2∗
, (21)

here, N is a measure of ln(bH2), increases during inflation. Substituting the
expressions of scale factor and directional Hubble parameter from Eq.(10),
we arrive at

N =
q

2

(
2

(m + 2)γ
− 1

)
ln

φ∗

φend

. (22)

During high friction and minimal regimes, the above expression turns out to
be as

N =
3

2

(
q − m

m + 2

)
ln

(
φ∗

φend

)
,

Nmin =

(
q − 2m − 2

2(m + 2)

)
ln

(
φ∗

φend

)
, (23)
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Figure 3: (left) N versus q for Φend ∼ 10−17mP , m = 1.1 (red); m = 2.5
(blue); m = 10 (purple); (right) N versus q for Φend ∼ 10−6mP , m = 1.1
(green); m = 2.5 (yellow); m = 10 (cyan).

respectively. On comparing, we can note that our considered model has

more number of e-folds as compared to Nmin with a common term ln
(

φ∗
φend

)
.

During intermediate regime (where high friction condition violates), we can
not obtain feasible solution for b and H2, hence unable to conclude a simple
form for N .

Now, we specify a lower bound for N during inflation. Let us take tk
be the time where λk = 1

k
(length scale), attributed to the wavelength k =

1
λk

= b(tk)H2(tk) (where b(t0) = 1 and t0 be the present time), exited the
Hubble radius during inflation. The LSS observations are limited to scales of
about 1Mpc (denoted by λmin) to the present Hubble radius (λmax). These
observable scales crossed the Hubble radius during the following visible e-
folding

Nvis = ln

(
λmax

λmin

)
= ln

(
H−1

0

1Mpc

)
. (24)

Putting H0 = 67.3km/sMpc−1 (95%C.L.) [23], we obtain Nvis = 8.4. Hence,
all relevant scales exited the Hubble radius during 8.4 e-folding after 1

H0
’s

exit, so N > 8.4. Equations (13) and (23) lead to following e-folding number
during minimal case

Nmin <

(
q − 2m − 2

2(m + 2)

)
ln

((√
2(1 + 2m)

2
√

π(m + 2)

qΓ( q+2
2q

)

Γ(1
q
)

)
MP

φend

)
,

where φend depends on the chosen potential (given in Eq.(18)). For instance,
Φend is of the same order of φc for d = 1 in Eq.(18). To set an upper bound
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on Nmin, I have plotted trajectories for N − q taking Φend is equivalent to
electroweak scale, i.e., Φend ∼ 10−17mP (mP be the planck mass) (left panel)
and Φend ∼ 10−6mP (right panel) and varying m = 1.5, 2.5, 10 in Fig.3.
It is noticed from both graphs of Fig.3 that an increment in the scale of
Φend leads to decrease the value of Nmin. An increasing relationship also
observed between N and m. The electroweak scale sets an upper bound,
i.e., Nmin < 24 (m = 1.5), Nmin < 26 (m = 2.5), Nmin < 32 (m = 10)
while Nmin < 7 (m = 1.5), Nmin < 8 (m = 2.5), Nmin < 10 (m = 10) for
Φend ∼ 10−6mP . The theory may become more viable at least in the context
of perturbations generation as the anisotropic model has ability to provide
more number of e-folds (N > 8.4) in non-minimal case as compared to the
minimal case.

Again considering the scale k = 1
λk

= b(tk)H2(tk), a wave-number had
chance to exit the Hubble radius during rapid oscillatory phase, following
the condition k ¿ 1

T (tk)
(H2T ¿ 1; b(t0) = 1). To examine this condition,

we proceed as that the maximum scale of our observable universe is of the
same order of magnitude as λmax = 1

H2
. Since an upper bound for period T

can be determined using last equality of Eq.(11) and Eq.(13) during rapid
oscillation: T (t) < Tu. Therefore, H2Tu ¿ 1 guarantees the consistency of
our assumptions with the horizon exit of λmax during rapid oscillation era.
This can be elaborated as

H2 <

(
q − 2m − 2

2(m + 2)

)
ln

(√
2(1 + 2m)

2
√

π(m + 2)

qΓ( q+2
2q

)

Γ(1
q
)

)
MP

φend

. (25)

If the anisotropic model provides enough e-folds (N > Nvis) after this exit,
also holds the above constraint, then, we can claim that other large cos-
mological observable scales had also the possibility to exit the Hubble radius
during this stage of inflation. Next, I will study perturbations generation and
check model parameter’s compatibility based on recent astrophysical data.

3 Anisotropic Cosmological Perturbations

In order to study the scalar and the tensor fluctuations, I decouple the space-
time into two components: the background and the perturbations. Further,
I have considered homogeneous and anisotropic LRS BI background corre-
sponding to the rapid oscillatory inflation in the context of non minimal
derivative coupling model studied in the last section. The Mukhanov-Sasaki

13



equation is used in order to analyze the quantum perturbations in rapid oscil-
lation era. This equation, for scalar and tensor perturbations in non-minimal
derivative coupling model, is written as follows [24]

d2v(s,t)k

dη2
+

(
c2
(s,t)k

2 − 1

z(s,t)

d2z(s,t)

dη2

)
v(s,t)k = 0, (26)

where cs, ct are the speed of sound associated with scalar and tensor modes,
respectively. The other terms involved in the above equation like the confor-
mal time (η) and zs, zt are defined as follows

η(t) =

∫ t dt′

b
m+2

3 (t′)
, zs = b

m+2
3 (t)

(
3

m + 2

)
Mpξ

H2

√
2Σ,

zt = b
m+2

3 (t)Mp

√
1 − α

√
eλ

ije
λ
ij

2
,

(27)

where

ξ =
1 − α

1 − 3α
, Σ = M2α

[
1 +

(m + 2)2H2
2

3M2

(
1 + 3α

1 − α

)]
.

Further,

α =
φ̇2

2M2M2
p

, c2
s =

(m + 2)2H2
2

9ξ2Σ
εs, c2

t =
1 + α

1 − α
,

where εs is given by

εs =
1

b
m+2

3 (t)

d

dt

[
b

m+2
3 (t)ξ(

m+2
3

)
H2

(1 − α)

]
− (1 + α),

=

(
3

m + 2

)
(1 − α)2

(1 − 3α)

(
1 − Ḣ2

H2
2

)
− (1 + α). (28)

Germani et al. [25] studied Mukhanov-Sasaki equation for quasi-de Sitter
background during slow-roll regime, where α = 0. Since during rapid oscilla-

tion stage, b(t) is a power law function of time, therefore εs = −
(

3
m+2

)
Ḣ2

H2
2
≈

q
q+2

. The second equality (constant εs) is obtained using previous relation-

ship of H2 in terms of γ (given in Eq.10). The expressions for cs and ct in
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Figure 4: Variations in cs versus q: for m = 1.1 (red); m = 2.5 (green);
m = 103 (blue).

terms of q can be calculated using ξ, Σ as follows

c2
s =

(1 − 3α)2

3α(1 − α)(1 + 3α)
εs =

(
1 −

(
1+2m
m+2

) (
q

q+2

))2

(1+2m
m+2

)
(
1 − (1+2m

m+2
)( q

3q+6
)
)(

1 + (1+2m
m+2

)( q
q+2

)
) ,

c2
t =

q(5m + 7) + 6(m + 2)

q(m + 5) + 6(m + 2)
. (29)

From first equality of the above equation, it is noticed that cs is also constant
like εs. Figure 4 shows that the speed of sound lies in the range 0 < cs < 1
for all values of m > 0. In the rapid oscillation era, using ξ, Σ, H2 in zs, we
get

zs = b
m+2

3 (t)Mp

(
1 − α

1 − 3α

) (
3

m + 2

) √
2α(m + 2)2(1 + 3α)

3 (1 − α)
. (30)

Since scale factor can be written in terms of conformal time as b(η) ∝
η−( 3q+6

2(m+2)), therefore, z(s,t) = β(s,t)b(η) where

βs = Mp

(
1 − (1+2m

m+2
)( q

3q+6
)
)

(
1 + (1+2m

m+2
)( q

q+2
)
) √√√√2(m + 2)(1 + 2m)( q

3q+6
)(1 + (1+2m

m+2
)( q

q+2
))

3
(
1 − (1+2m

m+2
)( q

q+2
)
) ,

βt = Mp

√
1 −

(
1 + 2m

m + 2

)(
q

3q + 6

)√
eλ

ije
λ
ij

2
.
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So, the conformal time derivative of z(s,t) is given by

1

z(s,t)

d2z(s,t)

dη2
=

(
3q + 6

2(m + 2)

)((
3q + 6

2(m + 2)

)
− 1

)
η−2.

Hence, the mode function satisfies the following differential equation

d2v(s,t)

dη2
+

(
c2
(s,t)k

2 − 1

z(s,t)

d2z(s,t)

dη2

)
v(s,t)k = 0,

d2v(s,t)

dη2
+

(
c2
(s,t)k

2 −
(

3q + 6

2(m + 2)

)((
3q + 6

2(m + 2)

)
− 1

)
η−2

)
v(s,t)k = 0,

whose solution is

v(s,t)k(η) = |η|
1
2

[
c
(1)
(s,t)(k)H(1)

v (c(s,t)k|η|) + c
(2)
(s,t)(k)H(2)

v (c(s,t)k|η|)
]
, (31)

where c
(1)
(s,t)(k) and c

(2)
(s,t)(k) are the integrating constants while H(1), H(2) are

the Hankle functions of the first and second kind of order v = m+2
2

+ q
2
.

I have used the Bunch-Davies vacuum by imposing the condition that the
mode function approaches the vacuum of the Minkowski spacetime in the
short wavelength limit b

k
¿ 1

H2
, where the mode is well with in the horizon.

In the rapid oscillation epoch, we have bH2 ∝ 1
|η| resulting kη À 1. Under

this limit, the Bunch-Davies mode function is given by vk(η) ≈ 1√
2csk

e−icskη.

v(s,t)k(η) =

√
π

2
ei(v+ 1

2
)π
2 (−η)

1
2H(1)

v (−cs,tkη),

In the limit, k
bH2

→ 0, the asymptotic form of mode function Eq.(31) is given
by

v(s,t)k(η) → ei(ν+ 1
2
)π
2 2(v−m+2

2
) Γ(v)

Γ(m+2
2

)

1√
2c(s,t)k

(−c(s,t)kη)−v+ 1
2 . (32)

To obtain scalar power spectrum P
1
2

(s,t)(k), we use the previous calculated
expressions given as

P
1
2

(s,t)(k) =

√
k3

2π2
|
v(s,t)k

z(s,t)

|,

=

√
k3

2π2

ei(v+ 1
2
)π
2

B(s,t)b(η)
2(v−m+2

2
) Γ(v)

Γ(m+2
2

)

1√
2c(s,t)k

(−c(s,t)kη)−v+ 1
2 .
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Figure 5: (left) The behavior of As versus q; (right) ρ versus q are plotted
for m = 1.1 (red); m = 2.5 (green); m = 10 (blue).

Rewriting the formula of conformal time in the following form

η =

∫
dt

b
m+2

3 (t)
= − 1

bH2

+

∫
εdb

b2H2

= − 1

bH2

1

1 − ε
. (33)

The last equality in the above equation is obtained by taking the fact that
ε is constant in the rapid oscillation era. Putting the above value of η, the
P(s,t) takes the following form

P
1
2

(s,t)(k) =
k2(v−1−m+2

2
)

√
c(s,t)πB(s,t)b

Γ(v)

Γ(m+2
2

)

(
c(s,t)k

bH2(1 − ε)

)−v+ 1
2

.

Moreover, at the horizon crossing scale csk = bH2, the power spectrum turned
out to be

P
1
2

(s,t)(k) =
2(v−1−m+2

2
)

πBs,t

Γ(v)

Γ(m+2
2

)

H2

c
3
2

(s,t)

(1 − ε)v− 1
2 .

To calculate amplitudes related to scalar and tensor spectrum, we write the
above expression as

P
1
2

(s,t)(k) = A(s,t)(q)
H2

Mp

|c(s,t)k=bH2 , (34)
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where

As(q) =
2(v−1−m+2

2
)

πBscs

Γ(v)

Γ(m+2
2

)
(1 − εs)

v− 1
2 ,

As(q) =
2(q− 5

2
+m+2

2
)

π(q + 2)
q
2
− 1

2
+m+2

2

√√√√ 1 − (1+2m
m+2

)( q
q+2

)

1 − (1+2m
m+2

)( q
3q+6

)

Γ(m+2
2

+ q
2
)

Γ(m+2
2

)
,

At(q) =
2(q− 5

2
+m+2

2
)

π(q + 2)
q
2
− 1

2
+m+2

2

√
q(m + 5) + 6(m + 2)

(1 − (1+2m
m+2

)( q
3q+6

))(q(5m + 7) + 6(m + 2))

×
Γ(m+2

2
+ q

2
)

Γ(m+2
2

)
. (35)

The above parameters As(q), At(q) are obtained using the values of v, B(s,t), c(s,t)

and εs in terms of q (defined earlier), corresponding to scalar and power am-
plitude. To get insight, we have plotted As − q in the left panel of Fig.
5 which shows that for all values of m > 1, the value of scalar amplitude
is always less than unity. Now, we are able to evaluate the energy density
using Eqs.(34), (35) and first field equation. As we know that at the ear-
liest stages of the cosmic evolution (not long after the singularity), H2 and
ρ might have been arbitrarily large. It is usually assumed that at densi-
ties ρ & M4

P ∼ 1094g/cm3, quantum gravity effects are so significant that
quantum fluctuations of the metric exceed the classical value of gµν , and
classical space-time does not provide an adequate description of the universe
[]. Hence, to prove that our model does not lie in quantum gravity regime, we
have plotted ρ versus q in the right panel of Fig.5 for three different values
of m. It is clear that there is an increasing behavior among ρ, q and m. An
upper bound for anisotropic parameter 1 < m < 45 is also calculated for
which ρ . M4

P ∼ 35.1557 × 1072(GeV )4 in the range q < 2.
These quantities lead us to calculate an important physical parameter,

i.e., tensor-scalar spectrum ratio, given by

r =
Pt

Ps

=

(
At

As

)2

=
q(m + 5) + 6(m + 2)

(1 − (1+2m
m+2

)( q
q+2

))(q(5m + 7) + 6(m + 2))
.

The behavior of tensor-scalar ratio with respect to q is checked in the left
graph of Fig.6. The Planck data put an upper bound on the physical pa-
rameter r, i.e., r < 0.11 (95% C.L.). The graphical analysis (shown in the
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left graph of Fig.6) proves that the considered anisotropic model is compat-
ible with recent astrophysical data presented by Planck collaboration for all
values of m ∈ (1,∞). Moreover, the best fit value of r is obtained in the
interval q ∈ (−3,−2).

Now, we are able to find another parameter, the spectral index (ns) by
the following formula

ns − 1 =
d ln Ps

d ln k
|csk=bH2=

d ln Ps

dt

dt

d ln k
|csk=bH2 ,

where
d ln k

dt
=

(
m + 2

3

)
H2

[
1 −

(
3

m + 2

)
ε

]
.

Putting in the above equation, we get ns in terms of q as follows

ns − 1 = − 6ε

(m + 2) − 3ε
= − 6q

(m + 2)(q + 2) − 3q
.

The right graph of Fig. 6 proves the compatibility of our anisotropic model
with recent Planck astrophysical data, i.e, ns = 0.9608 ± 0.0054 (68%C.L.
or 1σ error). I have plotted ns versus q for three different values of the
anisotropic parameter m = 1.1, 2.5, 45, picked from the range of 1 < m < ∞.
It is clear from Fig. 6 (right) that for all these values of m, ns lies in the
range 0 < ns < 1. It is also noticed that for m > 45, the value of ns exceeds
from unity which is not a physical value. Hence in this case, the model is
compatible with Planck data for 1 < m < 45.
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4 Concluding Remarks

Recent astrophysical data coming from the Planck satellite verifies that
the “large angle anomalies” represent original feature of the cosmic CMB
map. This result play a vital role to consider that the “small temperature
anisotropies” and “large angle anomalies” may be influenced by anisotropic
phase during the early cosmic evolution. This statement has a key impor-
tance as it favors to develop an alternative cosmic model to interpret the
effects of the early-time universe on the current structure of large scale with-
out affecting the processes of nucleosynthesis. Warm inflation is a good model
for LSS formation, in which the density fluctuations arise from thermal fluc-
tuation. It is described by a damping factor in the inflaton’s equation of
motion. The magnitude of this factor suggests the prospect that it has the
strong effect prolonging inflation.

Motivated by this fact, I study the warm inflation with non-minimal
derivative coupling model (which solves the issue of few number of e-folds
and clear the scenario “how reheating occurs?”) during rapid oscillations. To
get the comprehensive results, I have used the framework of homogeneous but
anisotropic LRS BI cosmic model, which is asymptotically equivalent to the
standard FRW universe. I reconstruct the formalism of oscillatory inflation
using anisotropic background. A power law form of potential is used to find
the adiabatic index (γ) and time period of the oscillations. On solving these
equations, I am able to calculate a constraint on the amplitude of the inflaton
(Φ) during non-minimal case for the realization of inflation. To check the
validity of the inequality in anisotropic model, I have plotted trajectories of
Φ

q+2
2 and the expression on right hand side (say f) of Eq.(12) versus q for

specified values of m in the left and right panel of Fig.1, respectively. It is
very much clear from the comparison of left and right graph of Fig.1 that
the value of Φ

q+2
2 is much less than the expression f for q < 2 and m > 1.

The end of inflation is discussed by using a special form of Damour-
Mukhanov potential where the inflation continues whenever d < g(b, q)
(given in 20). The violation of this inequality (i.e., d = g(bend, q) and
d > g(b(t > tend), q)), inflation terminates. The graphical analysis of this
double valued function is shown in Fig. 2 for three different values of b = 1
(red), 5 (green) 10 (blue). It is observed that g(b, q) has an increasing
behavior for all values of b > 0 in the range q ∈ (−∞, 1). The point of
intersection of the three curves is (1, 0), so inflation ends for d > 1 and
d ' 1 (φ ∼ φc). Further, I calculate the number of e-folds for the minimal

20



and non-minimal case during high friction regime. The plot for N − q is
presented to set an upper bound on Nmin, by fixing Φend ∼ 10−17mP (left
panel) and Φend ∼ 10−6mP (right panel) and varying m = 1.5, 2.5, 10 in
Fig.3. It is noticed from both graphs of Fig.3 that an increment in the scale
of Φend leads to decrease the value of Nmin while an increasing relationship
exists between N and m. The theory may become more viable at least in the
context of perturbations generation as the anisotropic model has ability to
provide more number of e-folds (N > 8.4) in non-minimal case as compared
to the minimal case.

Moreover, the cosmological perturbation scheme is developed in the anisotropic
background using the Mukhanov-Sasaki equation during rapid oscillation era.
The explicit expressions are calculated for speed of sound, scalar and tensor
power spectrum, tensor to scalar ratio and spectral index. Figure 4 shows
that the speed of sound lies in the feasible range 0 < cs < 1 for all values
of m > 0. To get insight, we have plotted As − q in the left panel of Fig.
5 which shows that for all values of m > 1, the value of scalar amplitude is
always less than unity. Hence, to prove that our model does not lie in quan-
tum gravity regime, we have plotted ρ versus q in the right panel of Fig.5 for
three different values of m. It is clear that there is an increasing behavior
among ρ, q and m. An upper bound for anisotropic parameter 1 < m < 45
is also calculated for which ρ . M4

P ∼ 35.1557 × 1072(GeV )4 in the range
q < 2. The behavior of tensor-scalar ratio with respect to q is checked in
the left graph of Fig.6. The left graph of Fig.6 proves that the considered
anisotropic model is compatible with recent astrophysical data presented by
Planck collaboration for all values of m ∈ (1,∞). Moreover, the best fit
value of r is obtained in the interval q ∈ (−3,−2). ns versus q is plotted for
three different values of the anisotropic parameter m = 1.1, 2.5, 45, picked
from the range of 1 < m < ∞ in Fig.6 (right). It is clear from graphical
analysis that for all these values of m, ns lies in the range 0 < ns < 1. It is
also noticed that for m > 45, the value of ns exceeds from unity which is not
a physical value. Hence in this case, the model is compatible with Planck
data for 1 < m < 45.

It is worth mentioned that all the results reduced to the isotropic case
for m = 1 [15]. The major difference is that it is not possible to find the
exact value of the parameter q during anisotropic background. In future,
I will perform this type of study by considering thermal correction to the
effective potential, also the temperature dependency of the dissipative factor
and checking all consistency conditions.
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