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We formulate a description of 3+1 dimensional gravitational phenomena in terms of a
relativistic fluid living on the 2+1 dimensional time-like boundary of an arbitrary bulk

region of space-time, called a gravitational screen. We establish a consistent dictionary

between the geometric variables describing the evolution of the screen and the thermo-
dynamics variables describing a relativistic viscous fluid, and discuss the interpretation.

We also examine the construction of gravitational screens in different spacetimes and

analyze the properties of the fluids they realize.

Keywords: Gravity; thermodynamics; quasi-local; holography; hydrodynamics.

1. Introduction

One of the greatest theoretical developments in modern physics has been the anti-

de Sitter/conformal field theory correspondence (AdS/CFT), which conjectures an

equivalence between a theory of gravity in a bulk region of space-time, and a quan-

tum field theory on the boundary of that space-time. AdS/CFT has illuminated

many aspects of string theory as well as field theory, giving key insights into what a

quantum theory of gravity might look like. More than that, it has provided us with

the tools to study a broad range of strongly coupled systems, such as fluids near

quantum critical points and quark-gluon plasmas. An intricately related concept is

the membrane paradigm, which asserts that one can replace the interior of a black

hole with a relativistic fluid living on its event horizon, and that the two would be

indistinguishable to an outside observer. These ideas are all, in essence, a state-

ment of the holographic principle; the fundamental idea that all of the information

contained in a bulk region of space-time can be encoded in the boundary of that

region.

These approaches offer a limited perspective however, since one is usually con-

strained to situations where knowledge of the boundary of space or the end of time

is required. AdS/CFT makes reference to the boundary of anti-de Sitter space

at infinity, while the membrane paradigm and standard formulations of black hole

thermodynamics both define quantities on the event horizon, which is teleological

and can only be located by knowing the entire future history of the universe. From a

practical point of view this is unsatisfactory, since as local observers we are generally

unable to access these types of boundaries.

Recent developments in addressing these issues has led to the concept of us-

ing a ‘gravitational screen’ as a quasi-local observer1. A gravitational screen is a

2+1 dimensional time-like hypersurface representing the time evolution of the 2d

boundary of a region of space-time. Projecting Einstein’s equations onto the screen
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leads to the equations governing the non-equilibrium thermodynamics of a viscous

fluid, and encodes in the fluid all of the gravitational dynamics present inside the

screen. This approach is reminiscent of the membrane paradigm3 and fluid/gravity

correspondence4 but allows one to discuss thermodynamics on any time-like surface.

In this work, we present the fully relativistic generalization of the work done in

Ref. 1, as well as correcting the interpretation of the fluid pressure as the screen’s

normal acceleration. We also construct examples of gravitational screens both in

Minkowski and Schwarzschild backgrounds and examine the properties of the cor-

responding holographic fluids. We examine how the fluid entropy is linked to the

curvature of spacetime, and remark on the salient features of the correspondence.

2. Screens as hypersurfaces

The gravitational screen Σ is a 2+1 dimensional hypersurface which is the time

evolution of a 2d boundary S of some 3d bulk region of interest. We consider

spherically symmetric boundaries only, though the screen geometry can in principle

be chosen arbitrarily. The screen is defined by sa, the outward pointing space-

like unit normal vector to S, and ua, the time-like unit vector tangent to Σ. By

construction sas
a = 1, uau

a = −1, and sau
a = 0.

Fig. 1. A gravitational screen S and its time evolution Σ.

The metrics on Σ and S in terms of the bulk metric gab are

Σ : hab = gab − sasb S : qab = hab + uaub (1)

with the associated extrinsic curvatures Hab = h c
a h

d
b ∇csd and Θuab ≡ q c

a q
d

b ∇cud.

The junction conditions6 then lead to a surface stress-energy tensor:

S̃ab =
1

8πG
Sab =

1

8πG

(
[H]hab − [Hab]

)
, H ≡ habHab (2)

Square brackets represent the discontinuity of a quantity across the boundary. We

will interpret this as the stress-energy tensor of a relativistic fluid living on the

surface Σ. We adopt a holographic point of view, where the fluid stress-energy

tensor (supported entirely on Σ) and the equations governing its evolution map to

the gravitational dynamics within the screen. To this end, we let [Hab]→ Hab and

[H]→ H giving

Sab = Hhab −Hab. (3)



May 4, 2018 15:36 WSPC Proceedings - 9.75in x 6.5in main page 3

3

This is in the same spirit as the membrane paradigm3, where the stretched horizon

is taken to be the boundary of the space-time and the stress energy tensor on the

surface is chosen so that field lines terminate at the boundary.

To arrive at a precise correspondence, we take Einstein’s equations in the 4d

space with zero cosmological constant, R− 1
2Rgab = Tab, and project them onto the

time-like membrane Σ a la the Gauss-Codazzi equations, the first of which is the

momentum constraint

DbS
ba = Tcbs

chba (4)

where DaVb = h c
a h

d
b ∇cVd is the covariant derivative on Σ. Equation (4) can

further be projected into the spatial direction as (DbS
ba)qac = Tsc, where Tsc ≡

saTac and it is understood that the index c represents components tangent to S.

This equation expresses conservation of momentum on Σ, with Tsc representing the

momentum flux density across the screen. Using the surface stress-energy tensor

(3) and inserting the factor 8πG gives

−(8πG)Tsc = θsauc + ( 3
2θuqbc + Θ̃ubc + εbc)ω

b +Duωc −Dc(γu + 1
2θs) +DbΘ̃

b
sc

(5)

Here, auc ≡ ub∇buc is the acceleration of screen observers, ωa ≡ q b
a (sc∇bu

c) is the

normal one-form, γu ≡ sbua∇au
b is the normal acceleration, Θ̃ubc is the symmetric

trace-free part of Θubc, εbc is the antisymmetric part of Θubc, which vanishes if ua

is hypersurface orthogonal, and θ is the expansion. Projecting (4) in the direction

of ua instead gives conservation of energy on the screen

−(8πG)Tsu = −(Du + θs)θu + (γu + 1
2θs)θu + Θ̃ab

s Θsab − (da + 2aua)ωa (6)

where Tsu ≡ saubTab represents the energy flux density flowing across the screen

and we have defined the covariant derivative on S as daVb = qcaq
b
d∇cVd.

3. Hydrodynamics

We consider now the equations governing a relativistic viscous fluid living on a 2+1

dimensional surface S2 ×R. The conservation equations are

∇aT
ab = 0 (7)

where in the general case we consider non-perfect (non-equilbrium) fluids with

stress-energy tensors of the form

T ab = euaub + (p+ π)qab + uaqb + ubqa + Πab. (8)

ua is the fluid 4-velocity, e is the internal energy density of the fluid, p is the isotropic

pressure, qab is the metric on S2, Πab is the anisotropic stress tensor, qa is the heat

flux, and π is the dynamic pressure (the difference between the total pressure and
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pressure at equilibrium). Πab, qa, and π are thermodynamic fluxes that capture the

deviations from a perfect fluid, and are given in this case by:

Πab = qacq
b
dT

cd − (p+ π)qab , qa = −qacT cbub , p+ π =
1

2
qabT

ab (9)

As in the gravity picture, we project (7) in the directions parallel and orthogonal to

ua, giving the analogue of the Gauss-Codazzi equations but with Tab playing the role

of Sab. Projecting in directions orthogonal to ua gives conservation of momentum:

0 = u̇c(e+ p+ π) + dc(p+ π) + (da + u̇a)Πa
c + qcbq̇

b +
(
ωac + σac + 3

2θqac
)
qa

(10)

and projecting in the direction of ua gives conservation of energy

0 = −ė− (e+ p+ π)θ − (da + 2u̇a)qa + Πabσab (11)

4. The dictionary

We can now construct the mapping between the geometric variables describing the

boundary evolution, and the thermodynamic variables governing the evolution of a

relativistic fluid. Remarkably, this can be done consistently in the relativistic case

just as in the Newtonian case considered in Ref. 1. Comparing the conservation of

momentum (10) and energy (11) equations for the fluid to the gravity equations (5)

and (6) leads to the following identifications:

e = − θs
8πG

p+ π =
γu + 1

2θs

8πG
θ = θu ωab = εab (12)

Πab = − Θ̃sab

8πG
σab = Θuab qa = − ωa

8πG
(13)

We initially took the hydrodynamic conservation laws (7) to be source-free, resulting

in the vanishing left hand side of (10) and (11). It is clear now that a non-zero Tsu or

Tsc, which represent respectively the energy and momentum flux across the screen,

manifest themselves as non-zero source terms in (7).

In this picture, the fluid energy density e is related to the rate of expansion of

outgoing radial null geodesics at the boundary. Our choice of sign leads to a negative

energy density which increases with the mass of the screened region. Positivity of

entropy and temperature for the screen fluid requires the presence of a negative

chemical potential µ for the fluid. The 2d fluid pressure p is now identified with

γu + 1
2θs, in contrast with both the membrane paradigm and the non-relativistic

screen formalism, where it is simply γu. The pressure can thus vanish for non-

trivial screen geometries leading to complex thermodynamic behaviour. The fluid

expansion θ is directly related to the expansion in the time direction of the screen.

The intuition is clear: if the screen expands with time, the 2d volume available to

the fluid increases, and the fluid expands.
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A new feature appearing in our work is the fluid twist or kinematic vorticity εab
which is equal to the twist ωab of the screen observers. The fluid twist measures rigid

rotations of fluid lines with respect to the local inertial rest frame. Traditionally,

quasi-local approaches to studying gravitational thermodynamics use shell observers

whose 4-velocities are hypersurface orthogonal5, and therefore have vanishing twist.

In hydrodynamics however, εab plays an important role in establishing the Kelvin-

Helmholtz and Bernoulli theorems, as well as modelling turbulence, and is therefore

a critical ingredient in attempting to understand the full non-linear dynamics of

gravity in hydrodynamic terms.

With this dictionary in place, well-known results from relativistic hydrodynamics

as well as the laws of thermodynamics can be used to study gravitational phenom-

ena.

5. Thermodynamics of screen fluids

The thermodynamic system governed by (6) has more degrees of freedom than

constraints, requiring additional information to complete. In hydrodynamics, this

comes in the form of an equation of state e(p) which characterizes the fluid. From

the gravity point of view, e ∼ θu and p ∼ γs, so it is the screen evolution/geometry

which fixes the equation of state of the fluid. One natural question that arises is

“What screen evolutions give rise to physical equations of state?”. As an example,

one can construct a static, spherically symmetric screen in Minkowski space, and see

that the equation of state becomes e(p) = −2p, which has the form p(e) = ωe with

ω = −1/2. Such equations of state appear in cosmology as models of dark energy

fluids, which satisfy the strong energy condition but do not support classical pertur-

bations. This fluid requires a negative chemical potential in order to have a positive

entropy and temperature, suggesting that the underlying microscopic constituents

are bosonic in nature. One can also examine what happens in a Schwarzschild

background, where we find that the fluid retains its barotropic nature, but now

supports classical perturbations (the speed of sound is positive) and has an entropy

which increases monotonically with the screen radius, allowing one to map the fluid

entropy to the volume of the curved spacetime enclosed by the screen.

These simple examples of screens already demonstrate some of the salient fea-

tures of the dictionary, and illustrate the subtleties involved in constructing screens

which have interpretations in terms of physical fluids. One task of this work is

to extend the formalism to dynamic backgrounds, which generically lead to time-

dependent equations of state, and better understand how phenomena such as grav-

itational waves manifest in the fluid. This will provide new insights into the ther-

modynamic nature of gravity from a quasi-local perspective, and also shed light

on dissipative phenomena in relativistic hydrodynamics, where exact solutions are

unavailable.
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