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Super-Massive Black Holes reside in galactic nuclei, where they exhibit episodic bright
flares due to accretion events. Taking into account relativistic effects, namely, the boost-
ing and lensing of X-ray flares, we further examine the possibility to constraint the mass
of the SMBH from the predicted profiles of the observed light curves. To this end,
we have studied four bright flares from Sagittarius A*, which exhibit an asymmetric
shape consistent with a combination of two intrinsically separate peaks that occur with
a specific time delay with respect to each other. We thus proposed that an interplay of
relativistic effects could be responsible for the shape of the observed light curves and we
tested the reliability of the method (Karssen et al. 2017, arXiv:1709.09896).
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1. Introduction

The time-scale of matter orbiting along r = const circular trajectory around Kerr

black hole of mass M can be written

Torb(r; a) ≃ 310(r
3

2 + a)M7 sec. (1)

Hereafter we use dimensionless geometric units, where length is expressed in terms

of gravitational radius, Rg≡GM/c2 ≃ 1.5 × 1012M7 cm and the spin parameter

−1 ≤ a ≤ 1 (positive values for the prograde rotation with the black hole). The

dimension-less angular momentum a adopts values in the range −1 ≤ a ≤ 1. Posi-

tive values correspond to co-rotating motion, while negative values describe counter-

rotation (many papers assume that the accretion disc co-rotates, although such an

assumption may not be necessarily true). Circular orbits of free particles are possi-

ble above the innermost stable circular orbit (ISCO a.k.a. marginally stable orbit).2

Gravitation governs the orbital motion near the horizon, and so the apparent vari-

ability associated with the motion can be scaled with the black hole mass.

The gravitational field is described by the metric of Kerr black hole1

ds2 = −∆

Σ

(

dt− a sin2 θ dφ
)2

+
Σ

∆
dr2 +Σ dθ2 +

sin2 θ

Σ

[

a dt−
(

r2 + a2
)

dφ
]2

(2)

in Boyer-Lindquist (spheroidal) coordinates t, r, θ, φ. The metric functions ∆(r)

and Σ(r, θ) are known in an explicit form. The event horizon occurs at the roots of
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April 27, 2018 5:58 WSPC Proceedings - 9.75in x 6.5in karas-BH2-main page 2

2

equation ∆(r) = 0; the outer solution is found given by r = R+ = 1 + (1 − a2)1/2,

which exists for |a| < 1. Once the black hole rotates (a 6= 0), particles and photons

are pushed to co-rotate with the black hole due to frame-dragging effect. The

co-rotation is obligatory within the ergosphere. Let us note that the Kerr spin

parameter is limited to an equilibrium value by photon recapture from the disc

(a ≃ 0.998) and by magnetic torques.3,4

The existence of ISCO is a remarkable feature of motion in strong gravity.2 For

a co-rotating equatorial disc,

RISCO = 3 + z2 −
[

(3− z1)(3 + z1 + 2z2)
]

1

2 , (3)

where z1 = 1 + α+α−[α+ + α−], α± = (1±a)
1

3 , and z2 = (3a2 + Z2
1)

1

2 . The ISCO

radius as function of spin spans the range of dimensionless radius from RISCO = 1

(for a = 1, i.e. a maximally co-rotating Kerr black hole) to RISCO = 6 (for a = 0,

a static case of Schwarzschild black hole) to RISCO = 9 (a = −1, case of maximum

counter-rotation).

The velocity of prograde Keplerian circular motion is

v(φ) = ∆−1/2
(

r2 − 2ar1/2 + a2
)(

r3/2 + a
)−1

(4)

with respect to locally non-rotating observers (LNRF). The corresponding angular

velocity is Ω(r; a) = (r3/2 + a)−1. Finally, to derive the interval measured by

a distant observer, one needs to consider the Lorentz factor associated with the

orbital motion,

Γ =

(

r3/2 + a
)

∆1/2

r1/4
√
r3/2 − 3r1/2 + 2a

√
r3 + a2r + 2a2

. (5)

Geodesic motion is determined by three constants of motion: the total energy

E , the azimuthal component of angular momentum Lz, and Carter’s constant Q.

Null geodesics are relevant to describe propagation of photons, and for these the

number of free constants can be reduced: ξ = Lz/E , η = Q/E2. For photons

propagating from the accretion disk towards a distant observer, the initial point is

set at a given radius in the equatorial plane of the black hole, whereas the final

point is at radial infinity, along the view angle of the observer. Relativistic effects

become more prominent an high inclination angles.5,6

We employ geometrical optics and derive predicted light-curves from a source of

light orbiting at a particular radius with the equatorial accretion disk. The equation

for photon rays (null geodesics) relates an emission point P0 = (r, θ, φ)em near the

black hole with the terminal point (α, β) in observer’s detector plane at spatial

infinity.7,8 The rays can be integrated in terms of elliptic integrals,

∫ R

Rem

R(r′)−1/2 dr′ =

∫ θ

θem

Θ(θ′)−1/2 dθ =

∫ φ

φem

F(φ′)−1 dφ′. (6)
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Fig. 1. Exemplary light curves of the signal from a spot orbiting on Keplerian circular trajectory
near Kerr black hole. Effects of General Relativity have been taken into account, which allows us to
constrain the parameters of the system. Left panel: radiation flux variation over a two revolutions.
Parameters of the system are specified with the plot (radius of the orbits is given with each curve
in units of the black hole gravitational radius, Rg = GM/c2). Right panel: Two cases of tidally
decaying spots due to differential rotation; (a) constant total emission from the spot (solid line)
vs. (b) exponentially decaying intrinsic emission with time (dashed line), motivated by modelling
the origin of the spot. Location of the spot is centered at r = 6R+.8

where

R(r) = r4 + (a2 − ξ2 − η)r2 + 2[η + (ξ − a)2]r − a2η, (7)

Θ(θ) = η + a2 cos2 θ − ξ2 cot2 θ, (8)

F(φ) = [2ar + (Σ− 2r)ξ csc2 θ]∆−1, (9)

∆(r) = r2 − 2r + a2, Σ = r2 + a2 cos2 θ, (10)

A(r, θ) = (r2 + a2)2 −∆(r)a2 sin2 θ. (11)

The two constants of motion of the photon motion satisfy

ξ = A1/2Σ−1/2E−1 sin θ sinα sinβ|P0
, (12)

η = ∆−1(r2 + a2 − aξ)2 − ΣE−2 cos2 α− ξ2 + 2aξ − a2|P0
(13)

with EA1/2 = Σ1/2∆1/2 + 2arΣ−1/2 sin θ sinα sinβ. Finally, time coordinate can

be integrated in the form

t =

∫ t

t0

A(r, θ) − 2arξ

Σ(r, θ)∆(r)
dτ. (14)

To show exemplary solutions of the above-given equations and to illustrate the

main effects of General Relativity, we plot several model light curves of an orbiting

spot in Fig. 1. The main parameters are the radial position of the center of the

spot, view angle of a distant observer, and the Kerr parameter of the black hole.8–10

One can distinguish two local maxima that dominate the light curve variation over

the revolution of the spot: (i) the Doppler boosting peak near the phase ≈ 0.7 (on

the approaching side of the trajectory with respect to the observer, with a certain
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time delay due to light-travel time), and (ii) the lensing peak near the phase 0.5

(due to light bending at the point of upper conjunction of the trajectory). Only one

of the peaks may appear in some cases; the occurrence and the relative height of

the two peaks depend on the model parameters. For spots on a close orbit around

the black hole, the light rays are bent to the extent that the Doppler-peak follows

immediately after the lensing peak, whereas for larger orbits the two peaks can be

a quarter of an orbit apart from each other. We propose that the changing profile

can be used to constrain the parameters of the system; in particular, this can allow

us to determine the parameters of the central black hole.11

Fig. 2. Histogram of the predicted mass of Sgr A* supermassive black hole derived from a com-
bination of the four flares taken into account. The most likely mass predicted by the method is
the median value indicated by the solid vertical line.8

Solving the above-given equations usually requires to perform several steps nu-

merically. Alternatively, let us mention that a number of semi-analytical approxima-

tions have been formulated that allow us to examine selected aspects (e.g. extremal

values of the redshift function from an orbiting spot).12–14 These can provide sim-

ple and practical estimates that are useful in analyzing the redshifted narrow lines,

however, the approximation approaches assume additional limitations that reduce

the accuracy.

2. The Method and Results

Karssen et al. (2017) studied the light curves of the four bright flares of Sagittarius

A* (Sgr A*) in the center of the Milky Way. They allowed the mass of the black

to vary as a free parameter and employed the model profiles to fit the most likely
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value. The flare time-scale in periods is matched with the actual duration of the

observed flare in physical units, which provides a way to constrain the black hole

mass. The quality and the volume of data for Sgr A* SMBH is the best, however,

the same approach can be employed also with other bright objects. In particular,

the method has been tested with the Seyfert I galaxy RE J1034+396.11

The simulated light curves are normalized to the maximum flux of the light

curve, which is set to be identical to the observed light curve. To conduct a time

efficient fit of the models to the data, we introduce a time shift, a flux density scaling

factor and a flux density offset. For each light curve the ratio is considered between

the number of data points of the light curve which belong to the flaring period

(defined by the requirement to on the flux to exceed 30 per cent of the maximum

value) and the number of data points of the quiescent state. The main features of

the flares are contained in the upper two-thirds of the flares. Every simulated light

curve ratio is then compared to an observed one; quiescent state data points are

removed from or added to the simulated data until the ratio is comparable.

By the fitting process the theoretical light curves are lined up with the observed

ones and the conversion factor is determined between geometrized time units of

a particular model and the physical time-scale of the observation. This relation

depends on the mass of the black hole. By gauging the intrinsic clock of the black

hole in its gravitational units to the clocks of the observations in seconds, the mass

of the black hole can be estimated. Each fit of a particular simulated light curve to

a particular observed flare then results in an estimate for M . The simulated data is

multiplied by a factor because in general the best-fit shape of the light curves does

not depend on the initial normalization we inferred earlier. In Fig. 1 we show the

resulting mass predicted from a combination of the four brightest Sgr A* flares by;

the y-axis of the diagram represents the number of model results that have predicted

the particular mass value. A peak in this diagram occurs where the most models

predicting the corresponding value in the particular mass bin find the minimum

of best-fit statistics. Let us note that the resulting distributions are not normal

distributions, hence we use the medians as a measure for the most probable mass,

as indicated by the vertical solid line in the graph.

3. Conclusions

The null geodesics were obtained by solving numerically the equations governing

the photon propagation in Kerr spacetime. In this initial work we have not included

additional complexities due to the intrinsic variation (decay) of the flares; such a

generalization is postponed for a future study, however, the necessary methodology

has been already developed; cf. the right panel in Fig. 1, where an exponentially

fading signal of a tidally sheared spot has been studied.

We have outlined a method based on a comparison between the simulations with

the bright X-ray flares from Sgr A*, which gives an estimate on the mass of the black

hole. Let us emphasize that the result does not depend on the uncertainties about
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the object distance, which otherwise complicates approaches to the mass estimation

by different methods. On the other hand, the hereby described method has other

underlying assumptions and it can be applied only if the light curves of the flare

events are dominated by the effects of relativistic motion of the source orbiting

the black hole. This may be adequate for a limited sub-sample of targets; we have

argued that the bright flares belong within the suitable category. For further details,

see Karssen et al. (2017).11
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