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In my talk I will consider gravitational waves in the most general class of teleparallel the-
ories, where gravity is described via torsion, and symmetric teleparallel theories, where
gravity is attributed to non-metricity. Both classes depend on a number of constant
parameters. The gravitational wave will be treated as a linear perturbation around a
flat background. I will discuss the possible polarizations of gravitational waves which
are allowed by the linearized field equations.
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1. Introduction

We use the following notation. Latin letters a, b, ... are Lorentz indices, greek letters
µ, ν, ... are spacetime coordinate indices. The Minkowski metric has components
ηab = diag(−1, 1, 1, 1).

The fundamental variables in theories of gravity formulated in terms of telepar-
allelism are the tetrad 1-forms θa, their dual vector fields ea and the curvature free
spin connection ωab generated by local Lorentz transformations Λab.

The building block of Lagrange densities is the torsion of the spin-connection
given by

T a = Dθa = (∂µθ
a
ν + ωabµθ

b
ν)dxµ ∧ dxν , (1)

where the spin covariant derivative D ensures a covariant transformation behaviour
under local Lorentz transformations of the tetrad . In the following we will use the
torsion components with spacetime indices only obtained via Tαµν = T aµνea

α.

2. NGR Lagrange density and field equations

The class of gravity theories called New General Relativity (NGR) 1,2 is defined
by the most general Lagrange densities which are quadratic in the torsion. They
can be displayed in a closed form by introducing three real parameters c1, c2 and c3
parametrizing the different NGR theories

L(θ, ∂θ, λ, ∂λ) = |θ|
(
c1T

ρ
µνTρ

µν + c2T
ρ
µνT

νµ
ρ + c3T

ρ
µρT

σµ
σ

)
. (2)
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To analyse the propagation of gravitational waves for NGR gravity we derive
the linearized field equations of the theory. To do so we fix Cartesian coordinates
(xµ, µ = 0, . . . , 3) and make the following perturbative Ansatz for the tetrad and
the Lorentz transformation defining the spin connection

θaµ = δaµ + ε uaµ, ea
µ = δµa + ε va

µ, Λab = δab + ε wa
b , (3)

where ε is a perturbation parameter.
To proceed we introduce the new variable xβσ = uβσ − wβσ and decompose it

into its symmetric and antisymmetric part xβσ = sβσ + aβσ which allows us to
analyse the field equations further. Using this, the linearized field equations take
the following form

0 = Eτκ = ∂ρ
[
(2c1 − c2)∂ρaτκ − (2c1 − c2)∂κaτρ + (2c2 + c3)∂τaρκ

]
+ ∂ρ

[
(2c1 + c2)∂ρsτκ − (2c1 + c2)∂κsτρ + c3

(
ητκ(∂ρsββ − ∂λsρλ)− ητρ(∂κsββ − ∂τsρκ)

)]
.

(4)

We note that indices can be lowered and raised at the first order perturbations
with Minkowski metric only. In the following we will deduce the polarization modes
of the perturbations from these field equations.

3. Newman-Penrose formalism and polarizations

The main ingredient of the Newman-Penrose formalism 3 is the choice of a partic-
ular complex double null basis of the tangent space. In the following, we will use
the notation of4 and denote the basis vectors by lµ, nµ,mµ, m̄µ. In terms of the
canonical basis vectors of the Cartesian coordinate system they are defined as

l = ∂0 + ∂3 , n =
1

2
(∂0 − ∂3) , m =

1√
2

(∂1 + i∂2) , m̄ =
1√
2

(∂1 − i∂2) . (5)

We now consider a plane wave propagating in the positive x3 direction, which
corresponds to a single Fourier mode. The wave covector then takes the form
kµ = −ωlµ and the symmetric and antisymmetric parts of the tetrad perturbations
can be written in the form

sµν = Sµνe
iωu , aµν = Aµνe

iωu , (6)

where we introduced the retarded time u = x0 − x3 and the wave amplitudes are
denoted Sµν and Aµν .

It follows from our choice of the matter coupling that test particles follow the
geodesics of the metric, and hence the autoparallel curves of the Levi-Civita con-
nection. The effect of a gravitational wave on an ensemble of test particles, or any
other type of gravitational wave detector, therefore depends only on the Riemann
tensor derived from the Levi-Civita connection. As shown in5, the Riemann tensor
of a plane wave is determined completely by the six so-called electric components.
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For the wave (6), these can be written as

Ψ2 = −1

6
Rnlnl =

1

12
s̈ll , Ψ3 = −1

2
Rnlnm̄ = −1

2
Rnlnm =

1

4
s̈lm̄ =

1

4
s̈lm ,

Ψ4 = −Rnm̄nm̄ = −Rnmnm =
1

2
s̈m̄m̄ =

1

2
s̈mm , Φ22 = −Rnmnm̄ =

1

2
s̈mm̄ , (7)

where dots denote derivatives with respect to u. We now examine which of the
components (7) may occur for gravitational waves satisfying the linearized field
equations (4).

Inserting the wave ansatz (6) and writing the gravitational field strength tensor
in the Newman-Penrose basis, we find that the eight component equations are sat-
isfied identically. The remaining eight component equations give modes correspond
to classes N2,N3, III5, II6 , depend on c1, c2, c3.

4. Generalized Symmetric Teleprallel Theories of Gravity

We take the metric gµν and connection Γασω as independent variables and consider
the Lagrangian density in the symmetric teleparallelism 6,7

LG =
1

2

√
−gQαµν(c1Q

µν
α + c2Q

µ ν
α + c3g

µνQα

+ c4δ
µ
αQ̃

ν + c5δ
µ
αQ

ν) + λ βµν
α Rαβµν + λ µν

α Tαµν . (8)

where so called non-metricity is given by

Qαµν ≡ ∇αgµν . (9)

We work in the coincident gauge, where the connection coefficients are zero
Γασω = 0, and consider a perturbation of the metric around the Minkowski metric

gµν = ηµν + xµν . (10)

The connection is metric compatible and torsion-free. The linearized field equa-
tions read

0 = 2c1η
ασ∂α∂σxµν + (c2 + c4)ηασ(∂α∂µxσν + ∂α∂νxσµ)

+2c3ηµνη
τωηασ∂α∂σxτω + c5(ηµνη

ωγηασ∂α∂ωxσγ + ηωσ∂µ∂νxωσ) . (11)

Alternatively, applying the same procedure we get N2,N3, III5, II6 classes, de-
pend on c2, c4, c5, while the terms come with c1, c3 vanish.

5. Conclusion

We have seen that depending on the constant parameters we obtain for both theory
the E2 class II6, III5, N3 or N2. We have also seen that there exists a family
of theories besides TEGR which is of class N2 and thus exhibits the same two
tensor modes as in general relativity. Theories in this class therefore cannot be
distinguished from general relativity by observing the polarizations of gravitational
waves alone.
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