MG15 - Talk detail |
Participant |
Haslinger, Philipp | |||||||
Institution |
Technische Universität Wien- Atominstitut - Stadionallee 2 - Wien - Wien - Austria | |||||||
Session |
PT3 |
Accepted |
|
Order |
Time |
|||
Talk |
Oral abstract |
Title |
Probing the forces of gravity, blackbody radiation and dark energy with matter waves | |||||
Coauthors | ||||||||
Abstract |
Atom interferometry has proven within the last decades its surprising versatility to sense with high precision tiniest forces. In this talk I will give an overview of our recent work using an optical cavity enhanced atom interferometer to sense with gravitational strength for fifths forces [1,2] and for an on the first-place counterintuitive inertial property of blackbody radiation [3]. Blackbody (thermal) radiation is emitted by objects at finite temperature with an outward energy-momentum flow, which exerts an outward radiation pressure. At room temperature e. g. a cesium atom scatters on average less than one of these blackbody radiation photons every 10^8 years. Thus, it is generally assumed that any scattering force exerted on atoms by such radiation is negligible. However, particles also interact coherently with the thermal electromagnetic field [4] and this leads to a surprisingly strong force acting in the opposite direction of the radiation pressure [3]. If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field it might be detectable as a fifth force between normal-matter objects. In order to be consistent with cosmological observations and laboratory experiments, some leading theories use a screening mechanism to suppress this interaction. However, atom-interferometry presents a tool to reduce this screening [5] on so-called chameleon models [6]. By sensing the gravitational acceleration of a 0.19 kg in vacuum source mass which is 10^-8 times weaker than Earth´s gravity, we reach a natural bound for cosmological motivated scalar field theories and were able to place tight constraints[1,2]. [1] P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, J. Khoury, Atom-interferometry constraints on dark energy, Science. 349 (2015) 849851. doi:10.1126/science.aaa8883. [2] M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, H. Müller, Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass, Nat. Phys. 13 (2017) 938942. doi:10.1038/nphys4189. [3] P. Haslinger, M. Jaffe, V. Xu, O. Schwartz, M. Sonnleitner, M. Ritsch-Marte, H. Ritsch, H. Müller, Attractive force on atoms due to blackbody radiation, Nat. Phys. 14 (2018) 257260. doi:10.1038/s41567-017-0004-9. [4] M. Sonnleitner, M. Ritsch-Marte, H. Ritsch, Attractive Optical Forces from Blackbody Radiation, Phys. Rev. Lett. 111 (2013) 23601. doi:10.1103/PhysRevLett.111.023601. [5] C. Burrage, E.J. Copeland, E.A. Hinds, Probing dark energy with atom interferometry, J. Cosmol. Astropart. Phys. 2015 (2015) 042042. doi:10.1088/1475-7516/2015/03/042. [6] B. Elder, J. Khoury, P. Haslinger, M. Jaffe, H. Müller, P. Hamilton, Chameleon dark energy and atom interferometry, Phys. Rev. D. 94 (2016) 44051. doi:10.1103/PhysRevD.94.044051. |
|||||||
Pdf file |
||||||||