From Gamma-Ray Bursts (GRBs) to Fast Radio Bursts (FRBs): Unveiling the Mystery of Cosmic Bursting Sources

Bing Zhang

University of Nevada Las Vegas

July 5, 2018

Fifteenth Marcel Grossmann Meeting

Iniversity of Rome "La Sapienza" – Rom<mark>e, July 1-7,</mark>

A tale of two bursts: part one

Gamma-Ray Bursts

1967-1973: Are they astrophysical?

GRB 670702

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, JAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

ABSTRACT

Sixteen short bursts of photons in the energy range 0.2–1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than 0.1 s to ~30 s, and time-integrated flux densities from ~10⁻⁵ ergs cm⁻² to ~2 × 10⁻⁴ ergs cm⁻² in the energy range given. Significant time structure within bursts was observed. Directional information eliminates the Earth and Sun as sources.

Subject headings: gamma rays - X-rays - variable stars

Monitor compliance with the 1963 Partial Test Ban Treaty

Where are they?

Isotropic Distribution

2704 BATSE Gamma-Ray Bursts

Distance Debate

1997: Discovery of afterglow & redshift

z=0.,767 Metzger et al. 1997 GRBs are at cosmological distances, and GRBs are the most luminous explosions in the universe.

8,000

GRB970508

NATURE VOL 386 17 APRIL 1997

Optical afterglow: van Paradijs et al. 1997

What make them?

 -			
 10.5	P 1	12.	

#	Author	Year Pub	Reference	Main Body	2nd Body	Place	Description
	Colgate	1968	CJPhys. 46, 8476	ST		COS	SN shocks stellar surface in distant galaxy
	Colgate	1974	ApJ, 187, 333	ST		COS	Type II SN shock brem, inv Comp scat at stellar surface
	Stecker et al.	1973	Nature, 245, PS70	ST		DISK	Stellar superflare from nearby star
	Stecker et al.	1973	Nature, 245, PS70	WD		DISK	Superflare from nearby WD
	Harwit et al.	1973	ApJ, 186, L37	NS	COM	DISK	Relic comet perturbed to collide with old galactic NS
	Lamb et al.	1973	Nature, 246, PS52	WD	ST	DISK	Accretion onto WD from flare in companion
	Lamb et al.	1973	Nature, 246, PS52	NS	ST	DISK	Accretion onto NS from flare in companion
	Lamb et al.	1973	Nature, 246, PS52	BH	ST	DISK	Accretion onto BH from flare in companion
	Zwicky	1974	Ap & SS, 28, 111	NS		HALO	NS chunk contained by external pressure escapes, explodes
	Grindlay et al.	1974	ApJ, 187, L93	DG		SOL	Relativistic iron dust grain up-scatters solar radiation
	Brecher et al.	1974	ApJ, 187, L97	ST		DISK	Directed stellar flare on nearby star
	Schlevskil	1974	SovAstron, 18, 390	WD.	COM	DISK	Comet from system's cloud strikes WD
	Schlovskii	1974	SovAstron, 18, 390	NS	COM	DISK	Comet from system's cloud strikes NS
	Bisnovatvi- et al.	1975	Ap & SS, 35, 23	ST		COS	Absorption of acutrino emission from SN in stellar envelope
	Bisnovatvi- et al.	1975	Ap & SS, 35, 23	ST	SN	COS	Thermal emission when small star beated by SN shock wave
	Bisnovatyi- et al.	1975	Ap & SS, 35, 23	NS		COS	Ejected matter from NS explodes
	Pacini et al.	1974	Nature, 251, 399	NS		DISK	NS crustal starquake glitch; should time coincide with GRB
	Narlikar et al.	1974	Nature, 251, 590	WH		COS	White hole emits spectrum that softens with time
	Tsygan	1975	A&A, 44, 21	NS		HALO	NS corequake excites vibrations, changing E & B fields
	Chanmugam	1974	ApJ, 193, L75	WD		DISK	Convection inside WD with high B field produces flare
	Prilutski et al.	1975	Ap & SS, 34, 395	AGN	ST	COS	Collapse of supermassive body in nucleus of active galaxy
	Narlikar et al.	1975	Ap & SS, 35, 321	WH		COS	WH excites synchrotron emission, inverse Compton scattering
	Piran et al.	1975	Nature, 256, 112	BH		DISK	Inv Comp scat deep in ergosphere of fast rotating, accreting BH
	Fabian et al.	1976	Ap & SS, 42, 77	NS		DISK	NS crustquake shocks NS surface
	Chanmugam	1976	Ap & SS, 42, 83	WD		DISK	Magnetic WD suffers MHD instabilities, flares
	Mullan	1976	ApJ, 208, 199	WD		DISK	Thermal radiation from flare near magnetic WD
	Woosley et al.	1976	Nature, 263, 101	NS		DISK	Carbon detonation from accreted matter onto NS
	Lamb et al.	1977	ApJ, 217, 197	NS		DISK	Mag grating of accret disk around NS causes sudden accretion
	Piran et al.	1977	ApJ, 214, 268	BH		DISK	Instability in accretion onto rapidly rotating BB
	Dasgupta	1979	Ap & SS, 63, 517	DG		SOL	Charged intergal rel dust grain enters sol sys, breaks up
	Tsygan	1980	A&A, 87, 224	WD		DISK	WD surface nuclear burst causes chromospheric flares
	Tsygan	1980	A&A, 87, 224	NS		DISK	NS surface nuclear burst causes chromospheric flares
	Ramaty et al.	1981	Ap & SS, 75, 193	NS		DISK	NS vibrations heat atm to pair produce, annihilate, synch cool
	Newman et al.	1980	ApJ, 242, 319	NS	AST	DISK	Asteroid from interstellar medium hits NS
	Ramaty et al.	1980	Nature, 287, 122	NS		HALO	NS core quake caused by phase transition, vibrations
	Howard et al.	1981	ApJ, 249, 302	NS	AST	DISK	Asteroid hits NS, B-field confines mass, creates high temp
	Mitrofanov et al.	1981	Ap & SS, 77, 469	NS		DISK	Helium flash cooled by MHD waves in NS outer layers
	Colgate et al.	1981	ApJ, 248, 771	NS	AST	DISK	Asteroid bits NS, tidally disrupts, heated, expelled along B line
	van Buren	1981	ApJ, 249, 297	NS	AST	DISK	Asteroid enters NS B field, dragged to surface collision
	Kuznetsov	1982	CosRes, 20, 72	MG		SOL	Magnetic reconnection at heliopause
	Katz	1982	ApJ, 260, 371	NS		DISK	NS flares from pair plasma confined in NS magnetosphere
	Woosley et al.	1982	ApJ, 258, 716	NS		DISK	Magnetic reconnection after NS surface He flash
	Fryxell et al.	1982	ApJ, 258, 733	NS		DISK	He fusion runaway on NS B-pole helium lake
	Homeury et al.	1982	A&A, 111, 242	NS		DISK	e- capture triggers H flash triggers He flash on NS surface
	Mitrofanov et al	1982	MNRAS, 200, 1033	NS		DISK	B induced cyclo res in rad absorp giving rel e-s, inv C scat
	Fenimore et al.	1982	Nature, 297, 665	NS		DISK	BB X-rays inv Comp scat by hotter overlying plasma
	Lipunov et al.	1982	Ap & SS, 85, 459	NS	1SM	DISK	ISM matter accum at NS magnetopause then suddenly accretes
	Baan	1982	ApJ, 261, L71	WD		HALO	Nonexplosive collapse of WD into rotating, cooling NS
	Ventura et al.	1983	Nature, 301, 491	NS	ST	DISK	NS accretion from low mass binary companion
	Bisnovatyi- et al.	1983	Ap & SS, 89, 447	NS		DISK	Neutron rich elements to NS surface with quake, undergo fission
	Bisnovatyi- et al.	1984	SovAstron, 28, 62	NS		DISK	Thermonuclear explosion beneath NS surface
	Ellison et al.	1983	A&A, 128, 102	NS		HALO	NS corequake + uneven heating yield SGR pulsations
	Hameury et al.	1983	A&A, 128, 369	NS		DISK	B field contains matter on NS cap allowing fusion
	Bonazzola et al.	1984	A&A, 136, 89	NS		DISK	NS surface nuc explosion causes small scale B reconnection
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.000				A	

By mid 90's: 128 different theoretical models !

"The only feature that all but one (and perhaps all) of the very many proposed models have in common is that they will not be the explanation of gamma-ray bursts." --- Malvin Ruderman (1975)

A theorist's heaven or hell?

Destructive (non-repeating) or non-destructive (repeating)?

- GRB 790305 = SGR 0525-66
- Soft Gamma-Ray Repeaters (SGRs)
- Magnetars: slowlyrotating, highlymagnetized neutron stars

Destructive ones: Short/Hard vs. Long/Soft

2017: GW170817/GRB 170817A

Most beautiful plot in astrophysics

Theoretical framework of GRBs

Increasingly difficult to diagnose with electromagnetic signals

Open Questions in GRB Physics

- Progenitors & classification (massive star core collapse vs. compact star mergers; others progenitor systems?)
- Central engine (black hole vs. millisecond magnetar)
- Ejecta composition (fireball vs. Poynting-flux-dominated outflow)
- Energy dissipation mechanism (shock vs. magnetic reconnection)
- Particle acceleration & radiation mechanisms (synchrotron, inverse Compton, vs. quasi-thermal)
- Afterglow physics (medium interaction vs. long-term engine activity)

THE PHYSICS OF GAMMA-RAY **BURSTS** Bing Zhang

Cambridge University Press

Central Engine: Black hole vs. millisecond magnetar?

Both engines seem to work in both long and short GRBs

Origin of the 1.7 s delay?

GW170817/GRB 1708917A

- Delayed launch of the jet?
 - What did the system do in 1.7 s (very long time)?
 - Delayed formation of a BH?
 - BH not needed to produce short GRBs!
 - Delayed dissipation (magnetic field amplification)?
 - Allowed but not needed
 - Negligible central engine delay at all (propagation)!
 - Duration ~ 2 s, Delay ~ 1.7 s, both time scales ~ R/Γ²c)
 - Traditional GRB mechanism (large emission radius, Poynting-flux dissipation)
 - Negligible engine delay, no significant cocoon emission
 - No BH formation needed

GW170817: Is a long-lived NS allowed?

GW constraints: upper limit at least one order above prediction Abbott et al. 2017, ApJL, 851, L16 Chassande-Mottin's talk

GW170817: Is a long-lived NS allowed?

EM constraints: As long as Bp is low – constraints from UV/optical/IR (upper), gamma/X/radio (middle) and multi-band (lower) Ai et al. 2018, ApJ, 860, 57

AT2017gfo: long-lived-NS-driven?

A late time X-ray "flare"?

Piro, Troja, Zhang et al., 2018, submitted

Swift X-ray flares and restarting central engine

Liang et al. 2006, ApJ, 646, 351

There is a long-lived NS/QS!

Implications

M_{TOV} is large! Rule out many soft EoSs

 M_{TOV} at least 2.16 - 2.28 M_{\odot}

- Small tidal deformability rules
 out many stiff EoSs
- "Goldilocks" EoSs

 $M_{TOV} > \sim$ (2.35-2.4) $\rm M_{\odot}$

 Consistent with conclusions drawn from short GRB observations and modeling

A tale of two bursts: part two

Fast Radio Bursts

The history is astonishingly repeating itself

2007: Report of the first FRB: Lorimer Burst

Lorimer et al. (2007) First event: FRB 010125

Took 8 years to confirm their astrophysical origin

Fig. 1. The frequency-integrated flux densities for the four FRBs. The time resolutions match the level of dispersive smearing in the central frequency channel (0.8, 0.6, 0.9, and 0.5 milliseconds, respectively).

Thornton, et al., 2013, Science

FRBs: Observational Clues

- Milliseconds duration: compact objects
- High Galactic latitudes, high dispersion measure (DM): cosmological distances
 - Extreme luminosity (10⁴³ erg/s)
 - Extreme brightness temperature $(T_b \sim 10^{34} 10^{37} \text{ K})$
- High rate: ~1000 per day all sky: common phenomenon
- At least one FRB repeating: non-destructive

Cordes +, 2016, ApJ

Kaspi's talk

FRBs vs. GRBs

	GRBs	FRBs
Step one: Are they astrophysical?	1967 – 1973	2007 – 2015
Step two: Where are they (distance)?	1973 – 1997 – 2004 (Afterglow counterpart, host galaxy)	2016 (Persistent radio source, host galaxy)
Step three: What make them?	1998 – 2017 (SN Ic, GW)	??? (pulsars? massive black holes? GRBs? GWs?)

Observationally driven Healthy dialog between observers and theorists

Multiple progenitor systems?

Known observationally-defined transients have multiple progenitors (SNe & GRBs)

that none of them is detected to repeat yet is $\sim (10^{-4} - 10^{-3})$ If other FRBs are similar to FRB 121102, the chance

Instability within pulsar magnetosphere (Philippov, Katz)

Catastrophic:

- Collapses of supra-massive neutron stars to black holes (thousands to million years later after birth, or in a small fraction hundreds/thousands of seconds after birth), ejecting "magnetic hair" (Falcke & Rezzolla 2013; Zhang 2014)
- Magnetospheric activity after NS-NS mergers (Totani 2013)
- Unipolar inductor in NS-NS mergers (Piro 2012; Wang et al. 2016)
- Mergers of binary white dwarfs (Kashiyama et al. 2013)
- BH-BH mergers (charged) (Zhang 2016; Liebling & Palenzuela 2016)
- Kerr-Newman BH instability (Liu et al. 2016)
- Cosmic sparks from superconducting strings (Vachaspati 2008; Yu et al. 2014)
- Evaporation of primordial black holes (Rees 1977; Keane et al. 2012)
- White holes (Barrau et al. 2014; Haggard)
- Axion miniclusters, axion stars (Tkachev 2015; Iwazaki 2015)
- Quark Nova (Shand et al. 2015)

.

- Dark matter-induced collapse of NSs (Fuller & Ott 2015)
- Higgs portals to pulsar collapse (Bramante & Elahi 2015)

Most will not be the

correct interpretation

Models for repeating FRBs

- Extremely bright giant pulses from young pulsars? (Connor et al.; Cordes)
- Associated with magnetar giant flares? (Popov et al; Kulkarni et al.; Katz)
- Synchrotron maser from young magnetars? (Metzger et al; Ghisellini; Waxman; Beloborodov)
- Comets neutron star collisions (Dai et al)
- Kinetically powered magnetospheric reconfiguration (cosmic combs)?

Zhang (2017; 2018)

Models for catastrophic FRBs

- "blitzars": collapse of supramassive neutron stars? (Falcke & Rezzolla 2014; Zhang 2014)
- NS-NS mergers (Totani 2013; Wang et al. 2016)
- Mergers of charged compact objects (BH-BH. BH-NS, NS-NS) (Zhang, 2016)

An even more beautiful plot in astrophysics?

범

8

Concluding remarks

Gamma-Ray Bursts

It has been a lot of fun studying GRBs;
Still a lot of fun coming in the era of multi-messenger (EM, GW, neutrinos ...) astronomy

Fast Radio Bursts:

The fun has just started in the field of FRBs
Instead of reading history, one can actually make history (both observationally & theoretically)