Gravitational wave astronomy within ESA Science Programme

Stefano.Vitale@unitn.it Università di Trento, Istituto Nazionale di S. Vitale Fisica Nucleare e Agenzia Spaziale Italiana

LISA: LIGO/Virgo in space

	LIGO/Virgo	LISA
Size	4 km	2.5×10 ⁶ km
Frequency	>10 Hz	20 µHz ÷ 1 Hz

The LISA link

• GW curvature modulates the frequency of the received beam

$$\frac{\mathrm{d}v_{\text{rec.}}}{\mathrm{d}t_{\text{r}}} - \frac{\mathrm{d}v_{\text{em.}}}{\mathrm{d}t_{\text{e}}} = -\frac{c^2}{2\pi} \int_{\text{beam}} k^{\sigma} u^{\nu} R^{\rho}_{\nu\sigma0} k_{\rho} \, d\lambda = v_{\text{o}} \left\{ \dot{h}_{\text{receiver}}\left(t\right) - \dot{h}_{\text{emitter}}\left(t - L/c\right) \right\}$$

The LISA link

• GW curvature modulates the frequency of the received beam

$$\frac{dv_{\text{rec.}}}{dt_{\text{r}}} - \frac{dv_{\text{em.}}}{dt_{\text{e}}} = -\frac{c^2}{2\pi} \int_{\text{beam}} k^{\sigma} u^{\nu} R^{\rho}_{\nu\sigma0} k_{\rho} d\lambda = v_o \left\{ \dot{h}_{\text{receiver}} \left(t \right) - \dot{h}_{\text{emitter}} \left(t - L/c \right) \right\}$$
$$+ f_{\text{receiver}} \left(t \right) / m_{\text{receiver}} - f_{\text{emitter}} \left(t - L/c \right) / m_{\text{emitter}}$$

• so do, via Doppler effect, accelerations of satellites *relative to their local inertial frames*

Rome July 4, 2018

💽 esa

S. Vitale

The LISA link

• Inertial reference test-masses are used to correct for satellite acceleration

• Equivalent to directly tracking test-masses

6

•esa

- True reflection impossible. The LISA arm: two phase-locked counter-propagating links.
- LISA: 3 arms 2.5 Mo km
- 10 pm/√Hz single-link interferometry @1 mHz

LISA fundamentals: drag-free

lisa pathfinder

- Free-falling inside a spacecraft
 - Sooner or later test-masses will hit the walls
 - LISA: position of spacecraft relative to testmass is measured by local interferometer
 - Spacecraft is kept centered on test-mass by acting on micro-Newton thrusters.

LISA fundamentals: the constellation

- Satellites follow independent heliocentric orbits.
 No formation keeping needed
- Constellation rotates within waves and gives source location

LISA Instrument The Gravitational Reference Sensor with the testmass The Optical

The Optical Bench with:

- Local interferometer
- Spacecraft to spacecraft interferometer, including telescope

Rome July 4, 2018

The Gravity reference Sensor (GRS)

- Drag-free along sensitive direction
- Other test-mass degrees of freedom controlled via electrostatic forces
- 3-4 mm clearance between testmass and electrodes

test-mass electrode housing

Why low frequency?"

• Frequency of GW 2 x frequency of motion

• Kepler: faraway is slow

$$f = (1/\pi)\sqrt{GM/r^3}$$

• Big black-holes: can't get closer than horizon

$$f \ll \frac{1}{\pi\sqrt{8}} \frac{c^3}{GM}: 10^6 M_{\odot} \rightarrow 0.01 \text{ Hz}$$

• By the way, big is powerful: $h \propto M^2_{S. Vitale}$

	LIGO	LISA
Size	km	Million km
Wave period	0.001-0.1 seconds	minutes to hours
Mass of sources	~ 1-10 Sun	up to 1-10 Million Sun
Size of the source	~ 100-1000 km	1-10 Million km

Compact binary stars in the Milky Way

Colliding supermassive blackholes dragging their own galaxies (Hubble) Supermassive black-hole swallowing a small one

LIGO black-hole years before final merger

S. Vitale

Million solar mass Black-Holes

- Galaxies host > million solar mass Black-Holes
- Galaxy collide and form binary Black-Holes
- Binaries coalesce: more GW energy than all light in the Universe
- 10⁴-10⁶ times the energy of a LIGO/Virgo merger

14

High-precision gravitation

- All mergers in the universe in its frequency band, even out to z=20, if they were happening.
- Measures: luminosity distance 1 5 %
- Sky location 0.1° 5 °
- Masses to ± 0.1 -0.5%
- Spin magnitudes to ±0.01.
- Spin *vectors* to $\pm 3-5\%$

A deep universe, high resolution observatory

Cosmological stratigraphy

- Almost all BBH in their evolution cross LISA band (hundreds expected)
- Allows discriminating different model of galaxy formation.

Extreme Mass-Ratio Inspirals: EMRIS

- Stellar-mass BH capture by a massive BH: dozens per year.
- 10⁵ orbits very close to horizon. GRACE/GOCE for massive BHs.
 - Prove horizon exists.
 - Test the no-hair theorem to 1%.
 - Masses of holes to 0.1%
 - Spin of central BH to 0.001.

EMRIs as a GRG lab

- The no-hair theorem: spacetime around BH determined by mass and spin
- Quadrupole moment measured at 0.1 %
- Inconsistency with Kerr multipole structure allows to discriminate:
 - Strong environmental perturbation

Rome July 4, 2018

- New type of exotic compact object consistent with General Relativity: boson star, horizonless objects, non-Kerr axisymmetric geometries....
- Failure in General Relativity itself: dynamical Chern-Simons, scalar-tensor theories, braneworld models, theories with axions, constraints within parametrised models...

Multiband EMRIS? (Chen & Han 2018)

BHB scattered onto a MBH in a galactic nucleus.

50% of the binaries (if compact enough) can survive and form an EMRI)

T EMRI < T BHB

Kozai-Lidov oscillation canceled by GR precession up to the very last orbits

KL excitation in the last orbits of the inspiral:

Almost coincident BHB merger + EMRI

Cosmography with GW

- GW from chirping binary systems are standard sirens: *absolute* luminosity distances DL from period P and amplitude h:
- $D_L \propto cP\dot{P}/h$ • GW *do not measure* redshift z. DL(z) requires identification of e.m. counterpart.

S. Vit

The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

Yike Tang¹, Zoltán Haiman², Andrew MacFadyen¹* ¹Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY, USA, 10003 ²Department of Astronomy, Columbia University, New York, NY, USA, 10027

both the GW and the X-ray chirp signals. In the future, it would be interesting to compute the accuracy to which the phase difference can be measured in practice, if the absolute phase is unknown ab-initio, given realistic observational S/N from LISA, and from an X-ray instrument such as Athena²,

Cosmography with GW

• Complementary to and totally independent of ESA's Euclid

lisa pathfinder

10 - 16

Kepler again: well separated smaller binaries rotate at low frequency

- 1. LISA compact galactic binaries.
 - Guaranteed (known) sources at high SNR: verification binaries
 - About 20000 double white dwarf binaries resolved
 - Discovery of distant/obscured/faint binaries.
 - The millions of ultracompact binaries will form a detectable foreground

VIRGO/LIGO BH in Prospects for Multiband Gravitational-Wave Astronomy after their Keplerian phase Alberto Sesana Phys. Rev. Lett. 116, 231102 (2016) – Published 8 June 2016 Phys. Rev. Lett. 116, 231102 (2016) – Published 8 June 2016 Rates of black hole merger formations inferred from the recent detection of gravitational waves suggest that a future space based facility like eLISA can efficiently inform LIGO and other facilitates about locations of potential black hole mergers weeks in advance.

2. Detecting LIGO events before they happen

Table 1: Overview of science objectives and their respective science investigations

- SO 1 Study the formation and evolution of compact binary stars in the Milky Way Galaxy
 - SI 1.1 Elucidate the formation and evolution of Galactic Binaries by measuring their period, spatial and mass distributions
 - SI 1.2 Enable joint gravitational and electromagnetic observations of galactic binaries (GBs) to study the interplay between gravitational radiation and tidal dissipation in interacting stellar systems
- SO 2 Trace the origin, growth and merger history of massive black holes across cosmic ages
 - SI 2.1 Search for seed black holes at cosmic dawn
 - SI 2.2 Study the growth mechanism of MBHs from the epoch of the earliest quasars
 - SI 2.3 Observation of EM counterparts to unveil the astrophysical environment around merging binaries
 - SI 2.4 Test the existence of intermediate-mass black holes (IMBHs)
- SO 3 Probe the dynamics of dense nuclear clusters using extreme mass-ratio inspirals (EMRIs)
 - SI 3.1 Study the immediate environment of Milky Way like massive black holes (MBHs) at low redshift
- SO 4 Understand the astrophysics of stellar origin black holes
 - SI 4.1 Study the close environment of Stellar Origin Black Holes (SOBHs) by enabling multi-band and multi-messenger observations and multi-messenger observations at the time of coalescence
 - SI 4.2 Disentangle SOBHs binary formation channels
- SO 5 Explore the fundamental nature of gravity and black holes
 - SI 5.1 Use ring-down characteristics observed in massive black hole binary (MBHB) coal whether the post-merger objects are the black holes predicted by General Theory of
 - SI 5.2 Use EMRIs to explore the multipolar structure of MBHs
 - SI 5.3 Testing for the presence of beyond-GR emission channels
 - SI 5.4 Test the propagation properties of gravitational waves (GWs)
 - SI 5.5 Test the presence of massive fields around massive black holes with masses larger t
- SO 6 Probe the rate of expansion of the Universe
 - SI 6.1 Measure the dimensionless Hubble parameter by means of GW observations only
 - SI 6.2 Constrain cosmological parameters through joint GW and electro-magnetic (EM) a
- SO 7 Understand stochastic GW backgrounds and their implications for the early Universe and Te physics
 - SI 7.1 Characterise the astrophysical stochastic GW background
- SO 8 Search for GW bursts and unforeseen sources
 - SI 8.1 Search for cusps and kinks of cosmic strings
 - SI 8.2 Search for unmodelled sources

And so on and so forth

LISA development and LISA Pathfinder

Rome July 4, 2018

S. Vitale

elements of the technologies needed for the DARWIN/IRSI cornerstone.

free falling masses: must accelerate just because of curvature

Accelerations relative to local frames must be negligible

Force vs curvature

• Acceleration of test masses, *relative to their local free-falling frames*, cannot be distinguished from the effect of curvature

$$\dot{v}_{em} - \dot{v}_{rec} = v_o (\dot{h}_{em} - \dot{h}_{rec}) + \frac{f_{em}}{m} - \frac{f_{rec}}{m}$$

$$\Delta g - \Delta g - \frac{f_{em}}{m} - \frac{f_{em$$

eesa

Sub-femto-g force suppression for LISA

• Cannot be tested on ground $\leq 0.1 \text{ Hz}$

LISA L3 Requirements

Sub-femto-g force suppression for LISA

- Cannot be tested on ground $\leq 0.1 \text{ Hz}$
- Orders of magnitude better than any other space mission

LISA Pathfinder concept

- Force disturbance is local. Test does not require million km size
- One LISA link inside a single spacecraft (no million km arm)
- •2 TMs,
- 2 Interferometers (Ifo)
- Satellite chases one testmass
- Contrary to LISA, second test-mass forced to follow the first at very low frequency by electrostatics

The LTP

- Test masses gold-platinum, highly non-magnetic, very dense
- Electrode housing: electrodes are used to exert very weak electrostatic force
- UV light, neutralize the charging due to cosmic rays
- Caging mechanism: holds the test-masses and avoid them damaging the satellite at launch
- Vacuum enclosure to handle vacuum on ground
- Oltra high mechanical stability optical bench for the laser interferometer

CGS-OHB, U.Trento-INFN, ETH Zurich, Ruag, TAS-I, Imperial College, IEEC

LTP Core assembly

Rome July 4, 2018

Rome July 4, 2018

LISA (L3) disturbance acceleration requirements

LISA Pathfinder requirements

- Amplitude requirement relaxed because single spacecraft experiment more noisy
- Frequency requirement relaxed to cut down ground testing time

📚 lisa pathfinder

LISA Pathfinder requirements

- Amplitude requirement relaxed because single spacecraft experiment more noisy
- Frequency requirement relaxed to cut down ground testing time
- Interferometer requirements maintained at 9 pm/ \sqrt{Hz} ~ as in LISA

Class. Quantum Grav. 28 (2011) 094002

F Antonucci et al

What were we expecting?

Table 2. Leading sources of differential force-per-unit-mass disturbances and their PSD values at 1 mHz. $PSD (fm s^{-2} Hz^{-1/2})$ Estimated from Source Actuation, x-axis 7.5 (0.8)ª Measurement of flight-model electronics stability Brownian 7.2 Measurement with torsion pendulum Magnetics 2.8 Measurement of magnetic field stability 1.1 Upper limit from the torsion pendulum Stray voltages test campaign 0.7 Measurement of laser power stability Laser radiation pressure Force from dynamics of other From simulated dynamics of DoF other 0.4 than x, and estimated worst-case values DoF of δD and δC Thermal gradient effects 0.4 Upper limit from the torsion pendulum test campaign Upper limit from thermo-elastic Self-gravity noise 0.3 stability simulations Noisy charge 0.1 Upper limit from the charge simulation and measured voltage balance From the estimation of stiffness and Coupling to SC motion via force 0.1 gradients simulated SC jitter Total 10.9 (7.9)^a Root square sum

• Cesa a The values within parentheses refer to the free-flight mode. See the text for explanation.

Table 2. Leading sources of differential force-per-unit-mass disturbances and their PSD values at TRENTO LINE

Source	PSD (fm s^{-2} Hz ^{-1/2})	Estimated from
Actuation, x-axis	10.1	Measurement of flight-model electronics stability
Brownian	7.2	Measurement with torsion pendulum

- Two dominating sources:
 - Actuation noise:
 - Electrostatic force is noisy, as voltage fluctuates.
 - Noise scales with setting of maximum force g_{max} you are prepared to counteract: the larger you set g_{max} the larger the noise
 - Brownian noise:
 - Random collisions with gas molecules
 - Noise scales with pressure: more
 - pressure more noise

Rome July 4, 2018

- First day of operations, March 1st 2016
- Better than requirement.
- Close to prediction
- Except interferometer noise at $35 \text{ fm}/\sqrt{\text{Hz}!}$

Gravitational compensation and actuation

- Electrostatic force mostly compensates gravitational force
- Gravitational force canceled in dead reckoning with ~1.8 kg balance mass
- Specification $g_{max} < 650 \text{ pm s}^{-2} (3 \sigma + \text{margin})$
- Actual: $g_{max} < 25 \text{ pm s}^{-2}$

EAD	£	2ñ	_		LISA Public All Wass Track	ահատ հայենաց			C.		No. Ange No.	- 12
=	144	-	1	and the second	Description of Rever Addud/Reversed internet concerning on	Description of Location	112	ij	Ransing Loss Rans Ref	14	-	1
	Dist.	100	her	To. 114	Concerning one of Solid	ETRIT ALL	A STREET	-	No. 1414		100	-
115			Der 4		Prove Chinese Colleges & Logistics	With I subal	5.405	1	BALLING T	1	-	-
#15.	40.000	14	Dan.	84.105	Protection and an and the state of the state	TX Acres Parent	2.754	1	Distantian I		-	
Sec.	4-1-1-		Lag.	10.11 a.	The has an an an an and the second second	a to the Pallocate States,	1000.00		Disk might?	1	_	_
50	1.1.1	- 81	pas.	_	the second states and the second second	ten of Y hits address	COMPANY.	4	Dot with he			
BA	NG./J.	100	pere.	Park 11	الد ایران را Harter و بوروانه ایران ایران ا	DOT LONG FORMATION	A MISA.	·	ALL DOCUMENTS	×	_	_
625-	1000	- 20-	100	Contract -	a substrate a datables	154 JOH 101	1.1.20		1.1.1.10014	- 5		-
-			£01		Chief Realities (1) Alleria (10)	Part Contract	ALC: NO.		201-400404	-		-
Q			1201	No. Lot	Rentral Statute Statements, No. 75 1	The Party of States	0.000		60-010b-l		-	
10.0		4	E		Apple 6. Autors in Applements	man Changelan	and the second		0.000	×-	_	-
	GR1C1	74-	Diam'r	201.01.6	Section March 1	No. June. No. 1 Lib shale.	10000	-	No. Young	1	-	
100		191	pest.	10 million 10	Barris Sain planten	The R. Act + and presel ?	1.111		Sal Laborer	1		
81A.1	Martin.	Par.	p-1	A	builted and tigget change gauge	BEF PT	1.1.91					
	1225.0	122			Coursel and region changes proved	PY #1	Lich					_
10.14	0.00		100		Deller, retain Medice a Concept	- 63	1001	1.	10.110		_	
NO	12202	100-	100	the state of the	THE PURP PURPHY AND	11	Colline 1	1.1	a series a	- d-	_	-
401	10.50	Part	1801		We and my day by Day douby	the second second second	1000		POP JEAN NO	6-	-	-
ha -		A			Kashin Lanin, a chaine I	LT COMPANY	CON-	17-1	1070000	-	-	-
100	1011	7611		10-2-2	West taxe reporter , both pricks a Venue	Gran advantage	1.001		S. 10. 11		_	-
			10.0	1	thankey coline. (all promobil colline and	New rollingtool	1.304(1)		10 A 241	× 1		_
Sec.	Maria		105.1		an again gante rich	1.3	100.00				No. 7.47	
				100	All clause scenes alle	dana a manufatha	12.22					
10.4	defails.	-00-	104	11.00		CLUB C AN ADDRE	10 Million 1		20.413.3	-	_	_
. I.A.	00.04	100	100	17.00	into induction, P.J., Machine and Anna a	TT Alogo Page	1.000	1.	Dis. Mile -		_	-
-	March	- 24-	100	and a second	and the second second	the spike Aug. And Indu-	August.	-A	Apr. March		_	-
	100	174	10.0	and and	and the second second second	100 200	120	1	0.00	-2-	-	-
6.0	11.71		Sec. 1	8.4/1	here into the most had	AND ANY	1.6.6	1.0	C. Parriel	- 2-	_	
0.0	14/1				mark how change with 73	1. 24	1.6.		The sea had	1	_	
111.		761	10.1		Golden strongs and full-man	101	To as TWO		The Street	7		
5 m.)	Sec.	Sec.		PR 61.1	Entre only change of the	12	2.30.11		SA 78 (6.)	7		
	100.00	4	per la	BUNCK.	Annat, then then an art film	21	1.8%		NOT STREET	1		
10.1					Roperts, June Manage	and deal risks, Third	President.			1		
					Manual Andrew Special & the	ster Dente, Chry			17 2143			
220	100 T 10	-	10.00	C5-H31	and the same spectrum direction on the function of the	store intra cope, and inside larger	ma	-				
		- 12		12 M.	A DESCRIPTION AND ADDRESS AT \$1. LABOR.	RI BARANNI INNA	1.000					_
				100 100	and the second second second in the second second	The Party State of Long State						

Authority: 650 pm s⁻²

April 2016

- Published in June 2016
- Pressure and Brownian decaying thanks to venting to space

Pressure and Brownian decay

Synopsis: Space-Based Detection of Gravitational Waves Gets Closer

The bag ingle has calculating data had by another techning and the valuement in partlevel problems and interim.

LISA Pathfinder 10^{-13} LISA Requirements Requirements $\left({ m m\,s^{-2}/Mz}\right)$ 10⁻¹⁴ April 2016 $S^{1/2}_{\Delta g}$ 10^{-15} February 2017 10^{-2} 10^{-5} 10^{-3} 10^{-4} Frequency [Hz]

The ultimate performance

Simulated LISA acceleration signal for two 5×10⁵ M₀ black-holes with their galaxies merging at z=5 LISA Pathfinder acceleration data

Rome July 4, 2018

S. Vitale

Simulated LISA acceleration signal for two 5×10⁵ M₀ black-holes with their galaxies merging at z=5 LISA Pathfinder acceleration data

Rome July 4, 2018

S. Vitale

Green Light for LISA

BBC O Sign in

News Sport Weather Shop Earth Travel Me

Science

Entertainment & A

NEWS

Science & Environment

World

Gravity probe exceeds performance goals

Tech

Business

By Jonathan Amos-BBC Science Correspondent, Boston

18 February 2017 Science & Environment

< Share

Magazine

The long-planned LISA space mission to detect gravitational waves looks as though it will be green lit shortly.

Rome July 4, 2018

And a Manufacture

al Malain Marchanete

S. Vitale

BBC O lign in Weathar EARD Travel

+ Share

NEWS

Business Tech Science Stories Entertainment & Arta

Science & Environment

Europe selects grand gravity mission

By Jonathan Amos **BBC Science Correspondent, Paris** C) 20 June 2017

Science & Environment

LISA Pathfinder: Time called on Europe's gravity probe

By Jonathan Arrios

BBC Science Correspondent

The European Space Agency (Esa) has turned off one of its most successful ever missions.

LISA – Status of Activities

Phase 0 activities - completed

Mission Definition Review passed (go-ahead for Phase A given)

Phase A activities

LISA

ahead

- Parallel industrial Phase A studies starting in Q2/2018 (20 months)
- Single Payload Phase A study contract to Consortium in parallel to industrial activities, supporting the nationally funded Phase A studies of provided instruments - all to start also Q2/2018
- Mission Consolidation Review planned around Mar-19, with the ٠ intention to enable the start of critical breadboarding activities
- NASA fully involved in Phase 0/A activities ٠
- System Engineering Office in place (as for ATHENA)

1 AU (150 million km)

Earth

2.5 million ki

Mission and Spacecraft

- Launch on Ariane 6.4 direct into escape and transfer to Earth trailing (or heading) heliocentric orbit at 1 AU, ~20 degrees phasing with the Earth. charging'
 - Constellation of three spacecraft, ~ equilateral triangle with side length ~2.5 Mkm, inclined at 60 degree w.r.t. ecliptic.
 - Spacecraft dry mass ~1950 kg each, trapezoidal 4.5 x 3 x 1.3 m³

Instrument

- Integrated payload with reference sensor (GRS), optical bench and telescope, plus phasemeter and electronics.
- Total estimated mass ~ 514 kg, Power in science mode: ~615 W
- Use of LPF heritage as far as possible, taking best benefit of previous LISA studies.

Rome July 4, 2018

A rather accelerated (initial) schedule of an international effort

Event	From	То	Status	
Phase 0 for instrument contributions	2017-JUL	2017-NOV	Done	
Mission Definition Review (MDR)	2017-NOV-2	27	Done	
Phase A (mission & instruments)	2018-APR	2019-DEC	Kicked-off	
Mission Consolidation Review (MCR)	2019-FEB	2019-MAR		
Mission Formulation Review (MFR)	2019-OCT	2019-DEC		
Adoption	<=2024			
Implementation (Phase B2/C/D)	8.5-9 years			
Launch				
Transfer & Commissioning	2.5 years			
Operations	4 years			
Extension (TBD)	6 years		10 years tot	al of science

Working toward the ideal scenario: Athena and LISA up together

LISA

Rome July 4, 2018

A large international scientific

864 members 415 «full» members (with FTE + deliverable assignments) 175 FTE

