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•  There is an old and attractive idea that a closed 
universe can nucleate out of “nothing”, since 
the total Hamiltonian vanishes, with all total 
charges zero [Lemaître;	Tryon;	

Brout,	Englert	&	Gunzig]	



No-boundary and tunneling proposals

•  Hawking (1981): “There ought 
to be something very special 
about the boundary 
conditions of the universe  
and what can be more special 
than the condition that there 
is no boundary”

•  Tunneling proposal (Vilenkin): 
creation of the universe seen 
as a regular tunneling event
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[Hartle	&	Hawking;	Vilenkin]	



No-boundary and tunneling proposals

•  The big bang is then 
replaced by semi-classical 
closed (and regular?) 
geometries

•  But how can we calculate 
this in practice?
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Two approaches
•  Euclidean
–  In analogy with Wick 

rotation in QFT it was 
hoped that this would 
lead to better 
convergence

–  However conformal 
mode problem

•  Lorentzian
–  No conformal mode 

problem
–  Causality can be built 

in
–  Not clear whether the 

path integral actually 
converges

[Hawking,		
Hartle,		
Gibbons,	
Perry,...]	

[Vilenkin,	
Teitelboim,...]	
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ȧ2

N2
+

1

2
a3

�̇2

N2
+ · · ·

!

Opposite		
signs	



Gravity plus Cosmological Constant

•  We will consider the simple system

    with

•  For a standard minisuperspace metric

   this is hard to solve
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ȧ2

N2
+ 3ka� a3⇤

◆

Can	add	ghosts	and	
choose	constant	N	
gauge	in	a	integral	–	
see	e.g.	[Teitelboim]	



An useful form of the metric
•  Technically much simpler to consider

   since then the action becomes quadratic

•  Then the integral over q=a2 is simply a Gaussian, 
and can be done exactly
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Path integral for the propagator
•  We are left with an ordinary integral over the lapse function

•  With canonical normalisation
•  Asymptotic behaviour:

Integrate	only	over	N>0	
->	causality	and	no	
double	counBng	
See	[Teitelboim	‘80s]	
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Lorentzian path integral converges!
•  Leibniz convergence test for alternating sum:

•  Divide up as follows:
•  We have n=6 and n=-2, hence our integral satisfies 

the test! 
•  But what does it converge to?
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Picard-Lefschetz theory

•  We are interested in oscillatory integrals, 
whose convergence properties are not clear, 
in particular the Feynman integral

•  View the integrand                    as a 
holomorphic function of             , then we 
might be able to find an appropriate 
convergent integration contour 
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not	physical	in	GR,	hence	it	seems	preferable	to	conBnue	the	fields	to	the	complex	plane	



Picard-Lefschetz theory

•  Cauchy’s theorem tells us that a complex 
integration contour can be deformed

•  Picard-Lefschetz theory tells us how it should be 
deformed

•  A review is provided by E. Witten “Analytic continuation 
of Chern-Simons theory” (2010)



From conditionally to absolutely convergent
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Picard-Lefschetz theory
•  Which Lefschetz thimbles contribute? We would like to 

re-express the original integration contour as a sum 
over (relevant) thimbles:

•  Only those thimbles contribute which can be reached 
from the initial contour via downwards flow

                                        
•  Final result:                                                    
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Example
•  Airy function

•  Two saddle points at
•  But do they both 

contribute? This 
depends on the 
argument:

•  Example 
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Lapse integral

•  There are 4 saddle points:

•  The saddle points will be real/complex depending on the 
signs of 

•  Now we can apply Picard-Lefschetz theory 
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No-boundary condition q0=0

•  Propagator 
from zero scale 
factor q0=0 to 
a large final 
value q1

•  Saddle points 
are complex



No-boundary conditions
•  Upward/downward flows:

Real	Bme	
contour	



No-boundary conditions
•  Upward/downward flows:

Real	Bme	
contour	

Only	one	Lefschetz	
thimble	contributes	



No-boundary conditions
•  Convergence near zero/at infinity:

Real	Bme	
contour	
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Wavefunction for no-boundary conditions

•  The wavefunction is dominated by a single 
saddle point, yielding

The	weighBng	is	inverse	to	that	
advocated	by	Hartle	and	Hawking,	
and	is	the	same	as	for	Vilenkin’s	
tunneling	wavefuncBon	
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Wavefunction for no-boundary conditions

•  The wavefunction is dominated by a single 
saddle point, yielding

Picard-Lefschetz	theory	implies	that	relevant	saddle	points	
will	always	contribute	with	a	suppressed	amplitude	–	this	
makes	sense	physically	as	quantum	processes	are	
suppressed	(and	not	enhanced)	compared	to	classical	
evoluBon	
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Include Tensor Perturbations
If we add perturbations, the propagator is given by

with 
where the perturbation action is (e.g. for a gravity wave 
mode with wavenumber l)
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Include Tensor Perturbations
•  In physical time,

•  Solution to the equation of motion                  
(at background saddle point), with

•  For P-L instanton, at South Pole
•  Then regularity implies c2=0 (now call            ) 
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•  The action then becomes            

•  so that the weighting is given by
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•  The action then becomes            

•  so that the weighting is given by

•  Thus the perturbations obey an inverse 
Gaussian distribution – the distribution 
prefers large fluctuations and the model 
breaks down!

 / e�
2
1

l(l+2)

2~H2 (�i sinh(Htp)+l+1)

| �| ⇡ e+�2
1

l(l+1)(l+2)

2~H2



Analogy in terms of Wick rotation

Picard-Lefschetz	

Hartle-Hawking	

One way to understand 
this result is to realize 
that Picard-Lefschetz 
theory forces one to 
choose the “wrong” 
Wick rotation

But note: here the Wick 
rotation arose from 
analytic continuation of 
the fields, not the time 
coordinate

Real		
Bme	

Imaginary		
Bme	



Do our approximations break down?

•  Backreaction (i.e. corrections to the scale factor due to 
the linear perturbations) change the results very little

•  Have also checked that the full non-linear l=2 modes 
show the same qualitative behavior – the instability in 
fact becomes even stronger at the saddle points

No	backreacBon	

BackreacBon,	linear	
perturbaBon	theory	

BackreacBon,	full	
Einstein	equaBons	
(Bianchi	IX)	
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No Euclidean path integral!
•  The Euclidean 

path integral 
cannot be 
approximated by 
the saddle point 
method, and is 
simply not well-
defined

Euclidean	
contour	

•  Other, inherently complex contours have been 
proposed by Diaz Dorronsoro et al., but (in our view) 
they lead to inconsistencies [Diaz	Dorronsoro,	Halliwell,	Hartle,	Hertog,	

Janssen,	Vreys:	1705.05340	&	1804.01102]		



Properties of the perturbed action

•  This comes about because the integral over 
perturbations is an infinite dimensional 
integral

•  The off-
shell action 
has branch 
points, i.e. 
it is not 
analytic



Strong singularities on real N line
•  In fact, the behavior on the real N line is 

worse at large N:

•  The off-shell geometries develop first 
one, then two singularities at which the 
perturbative action blows up



Properties of the perturbed action

•  Must exclude real N line for |N|>N*, since the 
perturbative action is not defined on those half-
lines

•  Thimbles are not affected
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r

3q1
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Regular Geometries
•  One could sum over only 

manifestly regular geometries, 
i.e. where there are no off-shell 
singularities at all!

•  Simplest model: sum over 
(complexified) spheres, 

    plus regular perturbations on
    the spheres
•  This leads to the same instability
•  Backreaction can be checked to 

be very small

a1

[Halliwell	&	Louko	(1989);	
Di	Tucci	&	JLL	(2018)]	
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Main lessons

•  With Λ>0 the Lorentzian path integral for 
gravity exists! (at least in minisuperspace)
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Main lessons

•  With Λ>0 the Lorentzian path integral for 
gravity exists! (at least in minisuperspace)

•  With Λ>0 the Euclidean path integral for 
gravity does not exist

•  The question of initial conditions remains 
wide open!



Outlook & applications
•  Are there models (with a different matter content 

& different boundary conditions) where there is 
no background/perturbations mismatch?



Outlook & applications
•  Are there models (with a different matter content 

& different boundary conditions) where there is 
no background/perturbations mismatch?

•  Applications of these methods:
–  When is QFT in curved spacetime a good 

approximation? What about the beginning of an 
inflationary phase?

–  Can we describe quantum transitions through the big 
bang with these methods?

–  Infinite dimensional Picard-Lefschetz might allow for a 
better mathematical definition of Lorentzian path 
integrals



Inconsistency of the new “circular” no-boundary 
proposal – look at isotropic boundary conditions
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Inconsistency of the new “circular” no-boundary 
proposal – look at isotropic boundary conditions

•  Because of the N-1/2 prefactor, one must choose a branch cut and 
the integral has to wind around the origin twice to obtain a 
closed contour – this integral is zero!

•  But we were describing the same physical situation, up to an 
extra integral over deformations of the sphere. To leading 
semiclassical order the results ought to agree, but they don’t – 
hence the circular contour is inconsistent!

•  Similar inconsistency for any change of dimension by one
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