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* There is an old and attractive idea that a closed
universe can nucleate out of “nothing”, since

the total Hamiltonian vanishes, with all total
charges zero

[Lemaitre; Tryon;
Brout, Englert & Gunzig]



No-boundary and tunneling proposals

You are here

« Hawking (1981): “There ought (b,
to be something very special
about the boundary
conditions of the universe
and what can be more special
than the condition that there
is no boundary”

e Tunneling proposal (Vilenkin):
creation of the universe seen
as a regular tunneling event

Origin/nucleation
of the universe

[Hartle & Hawking; Vilenkin]



No-boundary and tunneling proposals

You are here
(b,x)

* The big bang is then
replaced by semi-classical
closed (and regular?)
geometries

e But how can we calculate
this in practice?
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Two approaches

* Euclidean * Lorentzian
— In analogy with Wick — No conformal mode
rotation in QFT it was problem
hoped that this would — Causality can be built
lead to better in
convergence — Not clear whether the
— However contormal path integral actually
mode problem converges
[Hawking, [Vilenkin,
Hartle, qb2 Teitelboim,...]
Gibbons, S = [ dtN | —=3a— 3
Perry,...] / < a —|— QCL N2 T )
Opposite

signs



Gravity plus Cosmological Constant

* We will consider the simple system
Can add ghosts and

1S(N,a)/h choose constant N
\IJ — / 5N 50’ € ( )/ gauge in a integral —
C

see e.g. [Teitelboim]
1

* For a standard minisuperspace metric

ds? = —N?dt* + a*dQ;
this is hard to solve

-2
S = 272 / dtN (-:m% + 3ka — a3A>



An useful form of the metric

 Technically much simpler to consider

N? .
d32 _ dt2 + q(t)dﬂg [Halliwell & Louko (1988)]

q(t)

since then the action becomes quadratic

« Then the integral over g=a? is simply a Gaussian,
and can be done exactly



Path integral for the propagator

« We are left with an ordinary integral over the lapse function
Integrate only over N>0

. % -> causality and no
37 dN 2772@'50/71 double counting

G[Ql; QO] — Q—h 0 N1/2 € See [Teitelboim ‘80s]
A? A 1 3
So = N° a6 TN (—5((10 +q1) + 3) Ty <_Z(Q1 - QO)Q)

0o=2a,°, initial value of scale factor ~ q,=a,, final value of scale factor

« With canonical normalisation M = N1/2

« Asymptotic behaviour: - / o i(M6A2_]\q/_,_%2> /h
~ e



Lorentzian path integral converges!

* Leibniz convergence test for alternating sum:

m—

- ;1 < Gy
(/
a — E —1)"a; convergesif == ..
. (=1)'a 5 lim a; =0
— _ 1—00

00 .
:/ dr e** n>1lorn<—1
0
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Re[[]:/ dx cos(x") \/\ A/\[\

0 ; 5

 Divide up as follows: \/ \/ U U |||

* We have n=6 and n=-2, hence our integral satisfies
the test!
* But what does it converge to?




Picard-Lefschetz theory

* We are interested in oscillatory integrals,
whose convergence properties are not clear,
in particular the Feynman integral

w(xf,iljz) :/5I€ZS[m(t)]/h
C

» View the integrand Z = iS/h as a
holomorphic function of x € C, then we
might be able to find an appropriate
convergent integration contour

Cf. Wick rotation where a coordinate is continued to the complex plane. But coordinates are
not physical in GR, hence it seems preferable to continue the fields to the complex plane



Picard-Lefschetz theory

« Cauchy'’s theorem tells us that a complex
integration contour can be deformed

 Picard-Lefschetz theory tells us how it should be
deformed

* A review is provided by E. Witten “Analytic continuation
of Chern-Simons theory” (2010)



From conditionally to absolutely convergent

Look at the magnitude of the integrand:
Saddle point

A of the integrand
integrand
steepest
/fc ascent
also called A
steepest “thimble” — >
descent o
J
e)
A
integrand /.\

[ il
|d \f




Picard-Lefschetz theory

* Which Lefschetz thimbles contribute? We would like to
re-express the original integration contour as a sum

over (relevant) thimbles:
C = Z naja

* Only those thimbles contribute which can be reached
from the initial contour via downwards flow

e Final result:

/da: T _ Z”U eilm(Ia)/ h
. T




Example

Airy function Ai(¢) = QL /d%i(§+¢x>
7
Two saddle points at 2, = +i+/¢

But do they both
contribute? This
depends on the
argument:

Example Ai(e™/3)




Example

Airy function Ai(¢p) = 1 /d%f’;(%*m)

2T

Two saddle points at z, = —:i\/g

But do they both
contribute? This
depends on the
argument:

Example Ai(e™/3)

Green: integrand smaller
than at saddle point

Red: integrand larger than
at saddle point




Example

1

Airy function Ai(¢) = — /d%f”(%*m)

2T

Two saddle points at z, = —:i\/g

But do they both
contribute? This
depends on the
argument:

Example Ai(e™/3)

Assume defining
contour is along

real line, then flow
downward




Example

1

2T

- Two saddle points at 2, = +i+/¢

e Airy function Ai(¢p) = _/dze”’(§+¢“”)

* But do they both
contribute? This
depends on the
argument:

+ Example Ai(e"™/3)

1 '(“”2+ im/3 )
. 1\ -5 T€ 9
Ai(e™/3) ~ 5 ¢ ’

T

with =, — e7im/6




Lapse integral

@ > dN 627T2i50/h
on J, N1/

G[Ch; C_Io] —

A2 A 1 3
So = N? 36 + N (—5((]0 +q1) -1—3) + N <_Z(Q1 —CIO)Q>

There are 4 saddle points:

3 A A
Ny==+=[(=qo - DV?2+ (=¢1 — D)2
A[(SQO ) (o —1) ]

The saddle points will be real/complex depending on the
signs of Ag — 3
Now we can apply Picard-Lefschetz theory



No-boundary condition g,=0

* Propagator
from zero scale
factor g,=0 to
a large final
value g,

« Saddle points
are complex




No-boundary conditions

* Upward/downward flows:

Real time
contour




No-boundary conditions

* Upward/downward flows:

Real time
contour




No-boundary conditions

« Convergence near zero/at infinity:

Near N =0 :

/dNe_%
£

Real time

J4contour Nea,rN = X .

/dNeiN8




Wavefunction for no-boundary conditions

» The wavefunction is dominated by a single
saddle point, yielding

\Ijnb(ch) ~ €

1

i
4

31/4

( )1/4 e 1277/ (RA)—idm® /5 (1= 3)*/2 /1
2 Aql —3

T

The weighting is inverse to that
advocated by Hartle and Hawking,
and is the same as for Vilenkin’s
tunneling wavefunction




Wavefunction for no-boundary conditions

» The wavefunction is dominated by a single
saddle point, yielding

2

\Ijnb((h) ~ €

i
4

31/4

Q(Aql — 3)1/4

6—12w2/(h/\)—7g4w2\/§(q1 —3)3/2/p,

T

Picard-Lefschetz theory implies that relevant saddle points
will always contribute with a suppressed amplitude — this
makes sense physically as quantum processes are
suppressed (and not enhanced) compared to classical

evolution




Include Tensor Perturbations

If we add perturbations, the propagator is given by

\IJ[Q17¢1;Q()7¢O] :/ dN—/Dq/D¢€@S[q,¢,N]/h
0+
with § = 50 4 g(2)

where the perturbation action is (e.g. for a gravity wave
mode with wavenumber |)

: 2
S = /N dtd’z | ¢’ <¢) — (1 +2)¢°

= - { ¢¢} (on-shell)




Include Tensor Perturbations

In physical time,

1 YIAY '
S(Z):§/thpd3a: a3< ~ ) —al(l+2)¢°
Solution to the equation of motion z

(at background saddle point), with b = 3

p=a (1 y sinh(imp)) 5 (1 - sinh(iHm)_T (1 ) Iff@?)
o ) ()

For P-L instanton, at South Pole sinh(Ht) = —1
Then regularity implies ¢,=0 (now call ¢; = ¢1)

)
)



e The action then becomes

oF ZQ(;_;IQQ) (—isinh(Ht,)+1+1)

U oxe
* so that the weighting is given by

2 1(1+1)(1+2)
+é7 2h H 2

Wyl ~e



e The action then becomes

qb% l;;_;f; (—isinh(Ht,)+1+1)

U oxe
* so that the weighting is given by

2 1(14+1)(14+2)
‘\chb‘ ~ € +o1 2k H 2

* Thus the perturbations obey an inverse
Gaussian distribution — the distribution

prefers large fluctuations and the model
breaks down!



Analogy in terms of Wick rotation

One way to understand

T
T
T

his result is to realize
nat Picard-Lefschetz

neory forces one to

choose the "wrong”
Wick rotation

But note: here the Wick
rotation arose from
analytic continuation of
the fields, not the time
coordinate

Imaginary
time

Hartle-Hawking

Real
time

Picard-Lefschetz




Do our approximations break down?

« Backreaction (i.e. corrections to the scale factor due to
the linear perturbations) change the results very little

« Have also checked that the full non-linear I=2 modes
show the same qualitative behavior — the instability in
fact becomes even stronger at the saddle points

Re(1S)
200¢ —  No backreaction
150¢ Backreaction, linear
100t perturbation theory

50¢ e Backreaction, full

, Einstein equations
05 1015 20 25 (Bianchi IX)

=50t




No Euclidean path integral!

Fuclidean * The Euclidean
contour path integral

\ cannot be
approximated by
the saddle point
method, and is
simply not well-

defined

« Other, inherently complex contours have been
proposed by Diaz Dorronsoro et al., but (in our view)

they |ead to inconsistencies [Diaz Dorronsoro, Halliwell, Hartle, Hertog,

Janssen, Vreys: 1705.05340 & 1804.01102]



Properties of the perturbed action

* The off-
shell action
has branch i\ﬁs 1
points, I.e.
It Is not 73 a
analytic y

* This comes about because the integral over
perturbations is an infinite dimensional
integral



Strong singularities on real N line

* In fact, the behavior on the real N line is
worse at large N:

VY vy

* The off-shell geometries develop first
one, then two singularities at which the
perturbative action blows up



Properties of the perturbed action

3q1
N* = I —
\/ A

* Must exclude real N line for [N|>N,, since the
perturbative action is not defined on those half-

lines
e Thimbles are not affected




Regular Geometries

One could sum over only
manifestly regular geometries,
i.e. where there are no off-shell
singularities at all!

Simplest model: sum over
(complexified) spheres,

a(t) = +rsin (NEt)

(A

plus regular perturbations on
the spheres

This leads to the same instability
Backreaction can be checked to

be very small [Halliwell & Louko (1989);
Di Tucci & JLL (2018)]



Main lessons

* With A>0 the Lorentzian path integral for
gravity exists! (at least in minisuperspace)
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» With A>0 the Euclidean path integral for
gravity does not exist



Main lessons

* With A>0 the Lorentzian path integral for
gravity exists! (at least in minisuperspace)

» With A>0 the Euclidean path integral for
gravity does not exist

* The question of initial conditions remains
wide open!
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Inconsistency of the new “circular” no-boundary
proposal — look at isotropic boundary conditions

Bianchi IX metric:

N2
—leﬁ2 + %(a% + 05) + %032)

Leads to path integral:

dN . tanchi
/ _BZSB h IX/h
N

[Diaz Dorronsoro,
Halliwell, Hartle, Hertog,

Janssen & Vreys,
1804.01102]

Isotropic metric:

N2
—7dt2 + %(0% + 03 +03)

Leads to path integral:

ﬂeisiw/h
VN

[Feldbrugge, JLL & Turok,
1805.01609]



Inconsistency of the new “circular” no-boundary
proposal — look at isotropic boundary conditions

Bianchi IX metric: Isotropic metric:

N2
—thQ + %(a% + 05) + %032)

Leads to path integral:

N2
—7dt2 + %(0% + 03 +03)

Leads to path integral:

ﬂeisiw/h
VN

dN ,L-SBianchiIX/h
— €
N

« Because of the N-2 prefactor, one must choose a branch cut and
the integral has to wind around the origin twice to obtain a
closed contour - this integral is zero!

« But we were describing the same physical situation, up to an
extra integral over deformations of the sphere. To leading
semiclassical order the results ought to agree, but they don't -
hence the circular contour is inconsistent!

 Similar inconsistency for any change of dimension by one



