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An example of:

(a) How, by using well-motivated assumptions, physical input, and 
approximations, one can build a quantum theory of  the cosmos

(b) How one can use it to address some of  the open questions in cosmology

(c) How one can use this theory to make predictions that can help us to test the 
underlying ideas
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PLAN:

1. A brief  introduction to LQC

3. LQC and the CMB

2. Cosmic perturbations in LQC

Here, brief  overview of  work done by many researchers:
Alesci, Ashtekar, Barrow, Benitez-Martinez, Bojowald, Bonga, Bolliet, Brizuela, Cailleteau, Cianfrani, 
Corichi, Campiglia, Dapor, Diener, Engle, Freishhack, Garay, Grain, Gupt, Hanusch, Hernandez, 
Joe, Karami, Martin-Benito, Martin de Blas, Mena-Marugan, Megevan, Mielczarek, Montoya, 
Lewandowski, Linsefors, Liegener, Nelson, Pawlowski, Payli, Putchta, Olmedo, Singh, Taveras, 
Thiemann, Vandersloot, Vidoto, Vijayakumar, Wilson-Ewing,… 

More details, session QG3, chaired by Pullin and Singh, Thursday afternoon. 



1. A brief introduction to LQC
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Loop Quantum Gravity rests on Ashtekar’s reformulation of  GR in 
connexion variables:

Ashtekar variables

I, J = 1, 2, 3A

I
j (~x) SU(2) connectionis a

E

j
J(~x)A

I
i (~x)gµ⌫ ,

E

j
J(~x) its conjugate variable
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Loop Quantum Gravity rests on Ashtekar’s reformulation of  GR in 
connexion variables:

Ashtekar variables

I, J = 1, 2, 3A

I
j (~x) SU(2) connectionis a

(1) Classical phase space of  GR becomes same as in Yang-Mills theories. 
Unifying framework for all interactions

E

j
J(~x)A

I
i (~x)gµ⌫ ,

 9

E

j
J(~x) its conjugate variable

Main advantages:

(2) GR constraints simplify significantly; alleviates a major roadblock to quantize 
gravity  
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Loop Quantum Gravity rests on Ashtekar’s reformulation of  GR in 
connexion variables:

Ashtekar variables

I, J = 1, 2, 3A

I
j (~x) SU(2) connectionis a

(1) Classical phase space of  GR becomes same as in Yang-Mills theories. 
Unifying framework for all interactions

Quantum theory: 
The quantum representation is chosen using symmetries: 

(spatial) diffeomorphisms invariance            

Dynamics: 

 (Ai
I)

Ĥ (Ai
I) = 0

E

j
J(~x)A

I
i (~x)gµ⌫ ,

Wheeler-De Witt-like equation 
 10

E

j
J(~x) its conjugate variable

Main advantages:

(2) GR constraints simplify significantly; alleviates a major roadblock to quantize 
gravity  

unique kinematical Hilbert space: Quantum Geometry!



Loop Quantum Cosmology is a mini-superspace version of  
Loop Quantum Gravity:  

quantization of  spacetimes with the symmetries of  cosmology  
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First: the simplest, homogeneous + isotropic model: FLRW

Classical system:  scalar field         +  gravity        . In connexion variables:     a(t)�(t)

orthonormal triad  in space

AI
i (t) = c(t) eIi Ei

I(t) = p(t) eiI
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First: the simplest, homogeneous + isotropic model: FLRW

Classical system:  scalar field         +  gravity        . In connexion variables:     a(t)�(t)

Again, diffeo. invariance picks a  kinematical Hilbert space:

orthonormal triad  in space

Dynamics:

 (c,�)

AI
i (t) = c(t) eIi Ei

I(t) = p(t) eiI

Ĥ (c,�) = 0 Relational time interpretation: 
Klein-Gordon-like equation in 
“time” �

[@2
� +⇥2] (c,�) = 0
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First: the simplest, homogeneous + isotropic model: FLRW

Classical system:  scalar field         +  gravity        . In connexion variables:     a(t)�(t)

Again, diffeo. invariance picks a  kinematical Hilbert space:

Solving this equation, one obtains the Hilbert space of  physical states and 
physical observables in it. 

This is a theory of  quantum cosmology

orthonormal triad  in space

Dynamics:

 (c,�)

AI
i (t) = c(t) eIi Ei

I(t) = p(t) eiI

Ashtekar, Bojowald, Corichi, Martin-Benito, Mena-Marugan, Olmedo, Pawloswki, Singh, Wilson-Ewing…. 

Ĥ (c,�) = 0 Relational time interpretation: 
Klein-Gordon-like equation in 
“time” �

[@2
� +⇥2] (c,�) = 0



Physical consequences
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Analytical results:

All physical observables (e.g. curvature invariants, energy density  
of      ) are bounded above. No singularity in the entire Hilbert space. For 
instance:

Rsup = 48⇡G⇢sup⇢sup =
18⇡

G2~�
o

⇡ 0.4 ⇢
Pl

�

Minimum are eigenvalue in LQG

Ashtekar, Corichi, Pawloswki, Singh
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All states during the evolution go through an instant (in    -time) of  minimum 
volume and maximum curvature: Bounce

�

Additionally:

Analytical results:

All physical observables (e.g. curvature invariants, energy density  
of      ) are bounded above. No singularity in the entire Hilbert space. For 
instance:

Rsup = 48⇡G⇢sup⇢sup =
18⇡

G2~�
o

⇡ 0.4 ⇢
Pl

�

Minimum are eigenvalue in LQG

Ashtekar, Corichi, Pawloswki, Singh



Artistic conceptions of  the Big Bang and Big Bounce

Big Bang Big Bounce

Credits: Pablo Laguna Credits: Cliff Pikover



Equations that follow the evolution of          for “sharply peaked”  wave 
functions

To gain some intuition about the spacetime geometry:

 (c,�)

Effective equations
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hâi

H2 =
8⇡G

3
⇢

✓
1� ⇢

⇢sup

◆

ä

a
= �4⇡G

3
⇢

✓
1� 4

⇢

⇢sup

◆
� 4⇡GP

✓
1� 2

⇢

⇢sup

◆

�̈+ 3H�̇+
dV (�)

d�
= 0

P =
1

2
�̇2 � V (�)⇢ =

1

2
�̇2 + V (�)where, as usual: and



Work has been extended to more complex cosmological models:
-with spatial curvature

-Bianchi I, IX

-with cosmological constant

-Gowdy

Relation LQC and LQG

Lots of  recent work on relating LQC to LQG in a more systematic 
 way (symmetry reduction at the quantum level)
Alesci, Cianfrani, Engle, Brunnemann, Freishhack
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Goal: Apply this framework to the early universe
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I will use LQC to complete inflation, rather than to replace it



4/10/15, 5:29 PMThe Beginning of Everything: A New Paradigm Shift for the Infant Universe — Eberly College of Science
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The Beginning of  Everything: A New Paradigm
Shift for the Infant Universe

Diagram showing evolution of  the Universe according to the new paradigm of  Loop Quantum Origins, developed
by scientists at Penn State University and published on 11 December 2012 as an "Editor's Suggestion" paper in the
scientific journal Physical Review Letters. Image source: P. Singh Physics 5, 142 (2012). Image credit: Alan Stonebraker.
For re-use requests, contact APS.

28 November 2012 — A new paradigm for understanding the earliest eras in the history of  the universe has been
developed by scientists at Penn State University. Using techniques from an area of  modern physics called loop
quantum cosmology, developed at Penn State, the scientists now have extended analyses that include quantum
physics farther back in time than ever before -- all the way to the beginning. The new paradigm of  loop quantum
origins shows, for the first time, that the large-scale structures we now see in the universe evolved from fundamental
fluctuations in the essential quantum nature of  "space-time," which existed even at the very beginning of  the universe
over 14 billion years ago. The achievement also provides new opportunities for testing competing theories of  modern
cosmology against breakthrough observations expected from next-generation telescopes. The research will be
published on 11 December 2012 as an "Editor's Suggestion" paper in the scientific journal Physical Review Letters.

"We humans always have yearned to understand more about the origin and evolution of  our universe," said Abhay
Ashtekar, the senior author of  the paper. "So it is an exciting time in our group right now, as we begin using our
new paradigm to understand, in more detail, the dynamics that matter and geometry experienced during the earliest
eras of  the universe, including at the very beginning." Ashtekar is the Holder of  the Eberly Family Chair in Physics at
Penn State and the director of  the university's Institute for Gravitation and the Cosmos. Coauthors of  the paper,

Fig. Credits:  
P. Singh, Physics 5, 142 (2012) 
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2. Scalar and tensor perturbations in LQC
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Here, review of  one approach

Other approaches exists: see e.g. Mena-Marugan, Martin-Benito, 
Martin de Blas, Castello-Gomar, Olmedo

Similar results

(See Mena-Marugan’s talk on Thursday, session QG3)
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Starting point: 

Brief  summary of  the strategy:

 (a,�, ��, �gµ⌫)

Ĥ  (a,�, ��, �gµ⌫) = 0 @2t  pert + f(hâni, h�̂mi) pert = 0

One obtains a QFT in a quantum spacetime

Perturbation theory

Equations of  motion:

take expectation value in  FRW

I.A., Ashtekar, Nelson 2013
Ashtekar, Kaminski, Lewandowski 2010

 (a,�, ��, �gµ⌫) =  FRW(a,�)⌦  pert(a,�, ��, �gµ⌫)
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Result:

(⇤̃+ Ũ)Q(x) = 0 ⇤̃ T (+,⇥)(x) = 0

scalar pert tensor perts (two polarizations)

The resulting equations are formally equivalent to the equations normally used 
in cosmology: 

with the exception that the classical FRW metric has been replaced by:
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ds̃

2 = ã

2 (�d⌘̃

2 + d~x

2)
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Result:

(⇤̃+ Ũ)Q(x) = 0 ⇤̃ T (+,⇥)(x) = 0

Dressed, effective metric

scalar pert tensor perts (two polarizations)

Perturbations only sensitive to a couple of  “moments” of  

The resulting equations are formally equivalent to the equations normally used 
in cosmology: 

with the exception that the classical FRW metric has been replaced by 

where
 FRW

(simple result, although the specific moments are non-trivial)
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ds̃

2 = ã

2 (�d⌘̃

2 + d~x

2)

ã(⌘̃)
ã4(�) :=

h⇥̂�1/4 â4(�) ⇥̂�1/4i
h ⇥̂�1/2i

 FRW

 FRW

d⌘̃ := ã2(�) h⇥̂�1/2i d�
 FRW



3. Phenomenology of LQC 



LQC, Non-Gaussianity and CMB anomalies

Ivan Agullo

Loops 15, Erlangen,  2015

Louisiana State University
Ivan Agullo

4/10/15, 5:29 PMThe Beginning of Everything: A New Paradigm Shift for the Infant Universe — Eberly College of Science

Page 1 of 4http://science.psu.edu/news-and-events/2012-news/Ashtekar11-2012

The Beginning of  Everything: A New Paradigm
Shift for the Infant Universe

Diagram showing evolution of  the Universe according to the new paradigm of  Loop Quantum Origins, developed
by scientists at Penn State University and published on 11 December 2012 as an "Editor's Suggestion" paper in the
scientific journal Physical Review Letters. Image source: P. Singh Physics 5, 142 (2012). Image credit: Alan Stonebraker.
For re-use requests, contact APS.

28 November 2012 — A new paradigm for understanding the earliest eras in the history of  the universe has been
developed by scientists at Penn State University. Using techniques from an area of  modern physics called loop
quantum cosmology, developed at Penn State, the scientists now have extended analyses that include quantum
physics farther back in time than ever before -- all the way to the beginning. The new paradigm of  loop quantum
origins shows, for the first time, that the large-scale structures we now see in the universe evolved from fundamental
fluctuations in the essential quantum nature of  "space-time," which existed even at the very beginning of  the universe
over 14 billion years ago. The achievement also provides new opportunities for testing competing theories of  modern
cosmology against breakthrough observations expected from next-generation telescopes. The research will be
published on 11 December 2012 as an "Editor's Suggestion" paper in the scientific journal Physical Review Letters.

"We humans always have yearned to understand more about the origin and evolution of  our universe," said Abhay
Ashtekar, the senior author of  the paper. "So it is an exciting time in our group right now, as we begin using our
new paradigm to understand, in more detail, the dynamics that matter and geometry experienced during the earliest
eras of  the universe, including at the very beginning." Ashtekar is the Holder of  the Eberly Family Chair in Physics at
Penn State and the director of  the university's Institute for Gravitation and the Cosmos. Coauthors of  the paper,

Fig. Credits:  
P. Singh, Physics 5, 142 (2012) 

Strategy:
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Ashtekar, the senior author of  the paper. "So it is an exciting time in our group right now, as we begin using our
new paradigm to understand, in more detail, the dynamics that matter and geometry experienced during the earliest
eras of  the universe, including at the very beginning." Ashtekar is the Holder of  the Eberly Family Chair in Physics at
Penn State and the director of  the university's Institute for Gravitation and the Cosmos. Coauthors of  the paper,

Fig. Credits:  
P. Singh, Physics 5, 142 (2012) 

Strategy:

1) Perturbations start in the vacuum at early times

2) Evolution across the bounce amplifies curvature perturbations

3) Then standard slow-roll inflation begins, but perturbations reach the 
onset of  inflation in an excited state, rather than the vacuum

4) These excitations impact observables quantities
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Two-point function: The power spectrum



Scalar Power Spectrum 
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Results of  numerical evolution

Black line: average of  grey points

Grey point: numerical result for individual      ‘sk

LQC and the Power Spectrum

(I.A.-Ashtekar-Nelson 2012-13, I.A.-Morris 2015)
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m = 1.1⇥ 10�6�B = 1.22 and vacuum initial condition in the past

k?/a0 = 0.002Mpc�1

Tensor Power Spectrum 
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The pre-inflationary evolution modifies the power  for low  k-values  (long wavelengths)

Scalar Power Spectrum 

Free parameter: amount of  expansion before slow-roll inflation 

10�4 10�3 10�2 10�1 100 101

k/k⇤

10�10

10�9

10�8

10�7

P R
(k

)

kLQC/k⇤

Inflation without LQC

LQC introduces a new 
scale in the problem kLQC. 
It is defined by the Ricci 
curvature at the bounce 



For large post-bounce expansion, predictions are indistinguishable 
from standard inflation  

QG extension of  the inflationary scenario

For smaller  expansion, QG corrections at large angles in CMB.
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 Most important:    

reduction of  tensor-to-scalar ratio (slightly alleviates constrains on  
quadratic potential)

modification of  consistency relation r<� 8 nt

effects on spectral indices and runnings

modification of  power for low k

(see Mena-Marugan, Elizaga de Navascués, Bedic,  Martineau’s talks on 
Thursday session QG3 for many more details) 
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Three-point functions: Non-Gaussianity

(See talk by V. Sreenath for more details, Thursday afternoon)

Work in collaboration with B. Bolliet and V. Sreenath, 2017
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(a) If  it is too large, the perturbative expansion used to compute the power spectrum 
would break down. 

…a real possibility, because the bounce takes place at the Planck 

Why to study Non-Gaussianity?
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(b) Even if  perturbation theory turns out to be OK, there are strong observational upper 
bounds

(a) If  it is too large, the perturbative expansion used to compute the power spectrum 
would break down. 

…a real possibility, because the bounce takes place at the Planck 

Why to study Non-Gaussianity?
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Goal: Compute three-point correlation function

15

in the classical theory N
�

= V
0

H
0

a3). As for the free evolution, we are not free of factor order
ambiguities, and we choose a symmetric ordering. At second order, therefore, the evolution of
perturbations is sensitive to more ‘moments’ of the state  

0

(v,�) chosen to describe the quantum
FLRW geometry (in addition to the three already involved in the free evolution, Eqs. (3.17), (3.18),
and (3.19)). These moments can be read directly from (2.22)—keeping in mind the expression for
N

�

and the symmetric ordering—and we do not write them here again.
In the computations of the three-point correlation function of scalar perturbations, we will

restrict to states to states  
0

for the background geometry with small dispersion in v, and in
section ?? we will generalized these results by considering di↵erent values for ⇢

B

. The motivation
comes again from the results of [12], summarized above Eqn. (3.20). Then, the interaction
Hamiltonian for �� at leading order in perturbations is obtained by just substituting in (2.22)
the chosen solution ā(t), ⇡̄

a

(t), �̄(t), p̄
�

(t) of the e↵ective equations (3.10). We will now use
this Hamiltonian to obtain an expression for the primordial non-Gaussianity, at the end of inflation.

At the lowest order in perturbations, primordial non-Ganissianity is characterized by the Bis-
pectrum BR(k

1

, k
2

, k
3

) of comoving curvature perturbations at the end of inflation, defined from
its three-point correlation function via

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =: (2⇡)3�(3)(~k

1

+ ~k
2

+ ~k
3

)BR(k
1

, k
2

, k
3

) . (3.25)

BR(k
1

, k
2

, k
3

) has dimensions of (length)�6. It is common, and convenient, to characterize the size
of the bispectrum in terms of the dimensionless function f

NL

(k
1

, k
2

, k
3

),

BR(k
1

, k
2

, k
3

) =: �6

5
f
NL

(k
1

, k
2

, k
3

) ⇥ (�
k1�k2 +�

k1�k3 +�
k2�k3) , (3.26)

see appendix A2 of 0711.4126 for discussions about this sign. where �
k

:= 2⇡

2

k

3 PR(k) is the
dimensionful Power spectrum. (The numerical factor �6/5 appears because of historical reasons
[22].) Hence, f

NL

can be roughly thought of as the “amount of correlations in units of �2

k

”.
The strategy that we shall follow is to use the relation between R and �� to write f

NL

in terms
of the correlation functions of ��, and then use the interaction Hamiltonian of �� to compute the
result. This relation was given in (2.24),

R(~x, ⌘) = �z

a
��(~x, ⌘) +


�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

�⇣z
a
��(~x, ⌘)

⌘
2

+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlations functions at
the end of inflation for the wave-numbers ~k that we can observe today (se discussion below Eqn.
(2.24)). With this, we have

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =

⇣
�z

a

⌘
3

h
h0|�̂�

~

k1
�̂�

~

k2
�̂�

~

k3
|0i

+

✓
�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

◆ ⇣
�z

a

⌘ Z
d3p

(2⇡)3
h0|�̂�

~

k1
�̂�

~

k2
�̂�

~p

�̂�
~

k3�~p

|0i + (~k
1

$ ~k
3

) + (~k
2

$ ~k
3

)

+ · · ·
i
. (3.28)

In this equation, (~k
i

$ ~k
j

) indicates terms obtained from the first term in the second line after

interchanging ~k
i

and ~k
j

, and the dots in the third line indicate contributions containing five or

more fields �̂�
~

k

. To compute (3.28) at the end of inflation, we will use standard time-dependent
perturbation theory in the interaction picture, where operators evolve with the free Hamiltonian,
and states with the interaction Hamiltonian.

To go beyond linear perturbation theory: expand Einstein action at third order

Hard calculation. Done for the first time by Maldacena in 2003.

Even harder in pre-inflationary regime: absence of  slow-roll approx.

We need:
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We have developed a numerical code to compute non-Gaussianity in generic FRLW 
spacetime  

Embedded in the numerical infrastructure CLASS

We have made it publicly available: https://github.com/borisbolliet/class_lqc_public

This code will be useful beyond LQC
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15

in the classical theory N
�

= V
0

H
0

a3). As for the free evolution, we are not free of factor order
ambiguities, and we choose a symmetric ordering. At second order, therefore, the evolution of
perturbations is sensitive to more ‘moments’ of the state  

0

(v,�) chosen to describe the quantum
FLRW geometry (in addition to the three already involved in the free evolution, Eqs. (3.17), (3.18),
and (3.19)). These moments can be read directly from (2.22)—keeping in mind the expression for
N

�

and the symmetric ordering—and we do not write them here again.
In the computations of the three-point correlation function of scalar perturbations, we will

restrict to states to states  
0

for the background geometry with small dispersion in v, and in
section ?? we will generalized these results by considering di↵erent values for ⇢

B

. The motivation
comes again from the results of [12], summarized above Eqn. (3.20). Then, the interaction
Hamiltonian for �� at leading order in perturbations is obtained by just substituting in (2.22)
the chosen solution ā(t), ⇡̄

a

(t), �̄(t), p̄
�

(t) of the e↵ective equations (3.10). We will now use
this Hamiltonian to obtain an expression for the primordial non-Gaussianity, at the end of inflation.

At the lowest order in perturbations, primordial non-Ganissianity is characterized by the Bis-
pectrum BR(k

1

, k
2

, k
3

) of comoving curvature perturbations at the end of inflation, defined from
its three-point correlation function via

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =: (2⇡)3�(3)(~k

1

+ ~k
2

+ ~k
3

)BR(k
1

, k
2

, k
3

) . (3.25)

BR(k
1

, k
2

, k
3

) has dimensions of (length)�6. It is common, and convenient, to characterize the size
of the bispectrum in terms of the dimensionless function f

NL

(k
1

, k
2

, k
3

),

BR(k
1

, k
2

, k
3

) =: �6

5
f
NL

(k
1

, k
2

, k
3

) ⇥ (�
k1�k2 +�

k1�k3 +�
k2�k3) , (3.26)

see appendix A2 of 0711.4126 for discussions about this sign. where �
k

:= 2⇡

2

k

3 PR(k) is the
dimensionful Power spectrum. (The numerical factor �6/5 appears because of historical reasons
[22].) Hence, f

NL

can be roughly thought of as the “amount of correlations in units of �2

k

”.
The strategy that we shall follow is to use the relation between R and �� to write f

NL

in terms
of the correlation functions of ��, and then use the interaction Hamiltonian of �� to compute the
result. This relation was given in (2.24),

R(~x, ⌘) = �z

a
��(~x, ⌘) +


�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

�⇣z
a
��(~x, ⌘)

⌘
2

+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlations functions at
the end of inflation for the wave-numbers ~k that we can observe today (se discussion below Eqn.
(2.24)). With this, we have

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =

⇣
�z

a

⌘
3

h
h0|�̂�

~
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�̂�

~

k2
�̂�

~

k3
|0i

+

✓
�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

◆ ⇣
�z

a

⌘ Z
d3p

(2⇡)3
h0|�̂�

~

k1
�̂�

~

k2
�̂�

~p

�̂�
~

k3�~p

|0i + (~k
1

$ ~k
3

) + (~k
2

$ ~k
3

)

+ · · ·
i
. (3.28)

In this equation, (~k
i

$ ~k
j

) indicates terms obtained from the first term in the second line after

interchanging ~k
i

and ~k
j

, and the dots in the third line indicate contributions containing five or

more fields �̂�
~

k

. To compute (3.28) at the end of inflation, we will use standard time-dependent
perturbation theory in the interaction picture, where operators evolve with the free Hamiltonian,
and states with the interaction Hamiltonian.

BR(k1, k2, k3) ⌘ �6

5
fNL(k1, k2, k3) ⇥ (�k1�k2 +�k1�k3 +�k2�k3)

Non-Gaussianity parameterized by the function                           defined as: fNL(k1, k2, k3)

where
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First, we show equilateral configurations, i.e. k1 = k2 = k3
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Similar results for other configurations
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IR modes relative to kLQC UV modes relative to kLQC

Qualitative understanding: similar to the power spectrum
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Qualitative understanding: similar to the power spectrum

The bounce amplifies non-Gaussianity significantly, for modes that are of  the same 
order or more infrared than the curvature radius at the bounce 

Non-Gaussianty in LQC are strongly scale dependent, in contrast to a majority of  
models in the market 
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Two dimensional plots: fNL vs k2 and k3, for fixed k1

k1 = k⇤

k1 = 3 k⇤

k1 = 0.5 k⇤

The amplitude of  
fNL is quite 

uniform, although 
larger in squeezed 

configurations
~k1

~k2

~k3
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Summary of  the main results:

(1) The results of  standard inflation exactly recovered for UV modes (nice check)

(2) Non-Gaussianity is very oscillatory  

(3) The amplitude largely enhanced by the bounce for IR modes  

(4) We have checked that, despite the large enhancement, perturbation theory is 
under control

(5) Comparison with observations:
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The non-Gaussianity generated by the bounce in LQC  has precisely the shape needed to 
respect observational constraints on large k’s, and still to produce some observable effect at 

low k’s
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We are exploring whether this non-Gaussianity can produce effects in the 
CMB similar to the “large anomalies”   observed by WMAP and PLANCK



4. Summary



Under a series of  assumptions and approximations: 

(1) Build a theory of  quantum cosmology in which the Planck era of  the 
universe can be studied in detail. 
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(2) Big Bang replaced by bounce. Time emerges from relational 
approach. GR recovered a low densities. Etc.
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(2) Big Bang replaced by bounce. Time emerges from relational 
approach. GR recovered a low densities. Etc.

(5) Observable effects concerning tensor perturbations and Non-Gaussianity 


