Generalized Geometry and String Theory

Chris Hull Imperial College London

Tuesday, 14 July 15

Generalised Geometry

- Much recent work in string theory, supergravity... GG and its generalisations
- Geometric framework for metric + p-form gauge fields
- Unification of various geometric structures
- Organizing principle : <u>Duality symmetries</u>
- New mathematics for old geometries
- New 'non-geometries' in string theory

Generalised Geometry

Studies structures on a d-dimensional manifold M on which there is a natural action of O(d,d) Hitchin

Manifold with metric + B-field, natural action of O(d,d), tangent space "doubled" to $T \oplus T^*$

Extended/Exceptional Geometry: O(d,d) replaced by E_{d+1} acting on extended tangent bundle

Organizing principle : Duality symmetries e.g. O(d,d), E_d

Geometry of String Theory

<u>Spacetime</u>: supergravity background. 10-dimensional manifold M with metric + p-form gauge fields

Type II strings

Metric, signature 9+1 $g_{\mu\nu}$ Dilaton: scalar field ϕ 2-form Gauge field $B_{\mu\nu}$ H = dB

p-form gauge fields C_p

$$\delta C_p = d\lambda_{p-1} + \dots, \quad G_{p+1} = G_p + \dots, \quad G_{p+1} = *G_{9-p}$$

Type IIA: p odd. Type IIB: p even

Calabi-Yau

 $M = \mathbb{R}^{3,1} \times K_6$

Supersymmetric background: admits <u>Killing spinors</u> Spinor fields generating supersymmetries preserving soln

- 6-fold K: Calabi-Yau if Kahler Ricci-flat
- complex structure J: integrable map $J: TK \to TK$
- Hermitian metric g
- Kahler 2-form ω $\omega_{ij} = g_{ik}J^k{}_j = -\omega_{ji}$
- Holomorphic (3,0) form Ω

$$d\omega = 0, \quad \nabla \omega = 0$$
$$d\Omega = 0, \quad \nabla \Omega = 0$$

Forms from Killing spinor bilinears

 $J^2 = -1$

Generalisation to FLUX BACKGROUNDS? $B_2, C_p \neq 0$

Duality Symmetries fromTorus Reductions

- Compactify gravity or supergravity on T^d
- Scalars in coset space G/H,
- Truncated theory: non-comapact G symmetry
- Full theory: discrete subgroup G(Z)

- General Relativity in 3+1 dimensions on S¹ EHLERS SYMMETRY $SL(2, \mathbb{R})$ Scalars in coset space $\frac{SL(2, \mathbb{R})}{U(1)}$
- GR in D dimensions, reduced on torus T^d, Symmetry $GL(d, \mathbb{R})$ Scalars g_{ij} in coset space $\frac{GL(d, \mathbb{R})}{O(d)}$
- Full theory: Kaluza-Klein spectrum, discrete momentum p, breaking $GL(d, \mathbb{R})$ to $GL(d, \mathbb{Z})$ Group of large diffeomorphisms of d-torus

- Metric, 2-form gauge field B, reduced on T^d Symmetry O(d, d)Scalars g_{ij} B_{ij} in target space $\frac{O(d, d)}{O(d) \times O(d)}$
- Type II Supergravity, reduced on T^d
 Symmetry E_{d+1} (Cremmer-Julia)
 Scalars g_{ij}, B_{ij}, C_{i1...ip}, φ in target space

Full theory: $GL(d, \mathbb{R}) \subseteq G$ breaks to $GL(d, \mathbb{Z})$

String Theory: Discrete Symmetries of full theory $O(d,d) \rightarrow O(d,d;\mathbb{Z})$ <u>T-duality</u>, on p + string winding $E_{d+1} \rightarrow E_{d+1}(\mathbb{Z})$ <u>U-duality</u>, on p + brane wrapping

 $\underline{E_{d+1}}$

 H_{d+1}

Generalised Geometry

Conventional manifold M, doubled tangent space

 $GL(d,\mathbb{R})$ acting on $TM \implies O(d,d)$ acting on $T\oplus T^*$

Natural structure (M,g,B) instead of (M,g)

Doubled Geometry

 $GL(d, \mathbb{Z})$ acting on T^d $\Longrightarrow O(d, d, \mathbb{Z})$ acting on T^{2d} Doubled manifold

Generalised Geometry Hitchin, Gualtieri

Generalised Vector = Vector + 1-form

$$V = v + \xi \in T \oplus T^* \qquad V^I = \begin{pmatrix} v^i \\ \xi_i \end{pmatrix}$$

O(d,d) $V \to gV$ O(d,d) Metric $\eta = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$ $g^t \eta g = \eta$

$$\eta(v+\xi,v+\xi) = V^t \eta V = 2v^i \xi_i$$

Lie Bracket - Courant Bracket

<u>Generalised Metric</u> \mathcal{H}_{IJ}

Positive definite metric on $T \oplus T^*$ compatible with η

$$\eta^{-1}\mathcal{H}\eta^{-1} = \mathcal{H}^{-1}$$

 $S = \eta^{-1} \mathcal{H}$ satisfies $S^2 = \mathbb{1}$ Real structure Parameterised by $G = G^t$, $B = -B^t$ E = G + BMetric G and B-field B $\mathcal{H} = \begin{pmatrix} G - BG^{-1}B & BG^{-1} \\ -G^{-1}B & G^{-1} \end{pmatrix}$ O(d,d): $\mathcal{H} \to q^t \mathcal{H} q \qquad E \to (aE+b)(cE+d)^{-1}$ $\frac{O(d,d)}{O(d) \times O(d)}$ G,B combined in Parameterise coset gen metric

O(d,d) spinors $\Lambda^{\bullet}T^*$ Forms on M $\phi = \alpha + \beta_i dX^i + \gamma_{ij} dX^i \wedge dX^j + \delta_{ijk} dX^i \wedge dX^j \wedge dX^k + \dots$ 2^d components Clifford action on forms $V = v + \xi \in T \oplus T^*$ $\Gamma_V : \Lambda^{\bullet} T^* \to \Lambda^{\bullet} T^*$ $\Gamma_V: \phi \mapsto \iota_v \phi + \xi \wedge \phi$ $\Gamma_V \Gamma_{V'} + \Gamma_{V'} \Gamma_V = -2\eta(V, V')\mathbb{1}$ Even forms Chiral spinor $C_0 + C_2 + C_4 + \dots$ C^+ Anti-Chiral spinor Odd forms $C_1 + C_3 + C_5 + \dots$ C^{-}

Generalised Complex Structure \mathcal{J} Hitchin

Endomorphism of $T \oplus T^*$ $\mathcal{J}^2 = -\mathbb{1}$

Courant-integrable η hermitian

Interpolates between symplectic & complex structures, generalising both.

Gualtieri

Generalised Kahler \mathcal{H} \mathcal{T}

$$[S, \mathcal{J}] = 0 \qquad \mathcal{J}' = \mathcal{J}S$$

Two Complex structures on M, G Hermitian $\nabla^{\pm} J_{\pm} = 0$ $\nabla^{\pm} = \nabla \pm G^{-1} H$

(2,2) SUSY Sigma Model with torsion Gates, CMH, Rocek SUSY analysis gives general structure, potential Lindstrom, Rocek, von Unge, Zabzine

Generalised Calabi-Yau

- Gen Complex geometry can be encoded by pair of (pure) O(d,d) spinors i.e. differential forms $\Phi \sim \Omega, \Psi \sim e^{B+i\omega}$
- <u>Generalised CY</u>: these forms closed, and the spinors non-degenerate <u>Hitchin, Gualtieri</u>
- RR fields are also an O(d,d) spinor
- <u>Gen CY with flux</u>: Conditions for SUSY have elegant formulation in terms of these spinors
 <u>Grana, Minasian, Petrini, Tomasiello</u>

Strings on Circle

$M = S^1 \times X$

Discrete momentum p=n/RIf it winds m times round S¹, winding energy w=mRT Energy = $p^2+w^2+...$

T-duality: Symmetry of string theory

Ρ	\leftrightarrow	W
m	\leftrightarrow	n
R	\leftrightarrow	/RT

Fourier transf of discrete p,w gives periodic coordinates X, X̃ Circle + dual circle
Stringy symmetry, not in field theory
On d torus, T-duality group O(d, d; Z)

T-Duality

- Space has d-torus fibration
- G,B on fibres
- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology $E \rightarrow (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d, d; Z) \qquad E_{ij} = G_{ij} + B_{ij}$ On circle, radius R: $O(1, 1; \mathbb{Z}) = \mathbb{Z}_2 : R \mapsto \frac{1}{R}$

 X^i

 Y^m

Symmetry & Geometry

- Spacetime constructed from local patches
- All symmetries of physics used in patching
- Patching with diffeomorphisms, gives manifold
- Patching with gauge symmetries: bundles
- String theory has new symmetries, not present in field theory. New <u>non-geometric</u> string backgrounds
 Hull
- Patching with T-duality: **T-FOLDS**
- Patching with U-duality: U-FOLDS

Glue big circle (R) to small (I/R) Glue momentum modes to winding modes (or linear combination of momentum and winding) Not conventional smooth geometry

Geometric background: G, H=dB tensorial

T-fold: Transition functions involve T-dualities (as well as diffeomorphisms and 2-form gauge transformations) E=G+B Non-tensorial $O(d,d;\mathbb{Z}) \qquad E' = (aE+b)(cE+d)^{-1} \text{ in } U \cap U'$ $Glue \text{ using T-dualities also} \rightarrow \text{ T-fold}$ $Physics \text{ smooth, as T-duality a symmetry} \qquad Fixes Mot conventional smooth geometry} \qquad moduli!$

Double Field Theory Hull & Zwiebach

- From sector of String Theory. Features some stringy physics, including T-duality, in simpler setting
- Strings see a doubled space-time
- Necessary consequence of string theory
- Needed for non-geometric backgrounds

Strings on a Torus

- States: momentum p, winding w
- String: Infinite set of fields $\psi(p,w)$
- Fourier transform to doubled space: $\psi(x, \tilde{x})$
- "Double Field Theory" from closed string field theory. Some non-locality in doubled space
- Subsector? e.g. $g_{ij}(x, \tilde{x}), b_{ij}(x, \tilde{x}), \phi(x, \tilde{x})$

Double Field Theory

- Double field theory on doubled torus
- General solution of string theory: involves doubled fields $\psi(x, \tilde{x})$
- Real dependence on full doubled geometry, dual dimensions not auxiliary or gauge artifact.
 Double geom. physical and dynamical
- Strong constraint restricts to subsector in which extra coordinates auxiliary: get conventional field theory locally. Recover Siegel's duality covariant formulation of (super)gravity, GG.

O(D,D) covariant action using generalised metric, dilaton d

$$S = \int dx d\tilde{x} e^{-2d} L$$
$$L = \frac{1}{8} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_N \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_N \mathcal{H}^{KL} \partial_L \mathcal{H}_{MK}$$
$$- 2 \partial_M d \partial_N \mathcal{H}^{MN} + 4 \mathcal{H}^{MN} \partial_M d \partial_N d$$
$$\operatorname{Hohm, Hull \& Zwiebac}$$

L cubic! Indices raised and lowered with $\,\eta$

If independent of dual coord, \tilde{X} Gives usual action (+ surface term)

$$\int dx \sqrt{-g} e^{-2\phi} \left[R + 4(\partial\phi)^2 - \frac{1}{12} H^2 \right]$$

Extended Geometry, M-Theory

 $T \oplus \Lambda^2 T^* \oplus \Lambda^5 T^* \oplus \Lambda^6 T$ Hull; Pacheco & Waldram

- Extended geometry: extends tangent space
- Metric and 3-form gauge field, action of exceptional U-duality group
- I0-d type II and II-d sugra in terms of extended geometry Coimbra, Strickland-Constable & Waldram
- Double field theory generalises

Berman, Perry et al, Hohm & Sambtleben, ...

Generalised Parallelalisability

Lee, Strickland Constable, Waldram

- Generalised (or extended) tangent space is generalised parallelalisable if it admits a global frame. Important examples include S³,S⁴,S⁷
- Explains consistent truncations of supergravity on S³,S⁴,S⁷
- Gives insights into exotic supergravity gaugings of Dell'Agata, Inverso, Trigiante

Conclusions

- Generalised geometry gives elegant formulation for gravity + p-form gauge fields
- Unified treatment of various structures, allows general results
- Generalised complex geometry, generalised
 CY, superymmetric spaces. Gen parallelisability.
- String theory sees a doubled or extended spacetime, physical extra dimensions
- String theory has non-geometric solns, which look geometric in doubled formulation

Doubled Geometry for T-fold

- T^d torus fibres have
doubled coords $\mathbb{X}^I = \begin{pmatrix} X^i \\ \widetilde{X}_i \end{pmatrix}$ Hull
I = 1, ..., 2d
- Transforms linearly under $O(d, d; \mathbb{Z})$ T-fold transition: mixes X, \tilde{X} No global way of separating "real" space coordinate X from "auxiliary" \tilde{X}
- Duality covariant formulation in terms of XTransition functions $O(d, d; Z) \subset GL(2d; Z)$ can be used to construct bundle with fibres T^{2d}

Doubled space is smooth manifold!

Sigma Model on doubled space

Type I Extended Geometry

Action of O(d,d)

 $T \oplus T^*$

 G, B_2

cf Brane charges

Generalised metric

Type I Extended Geometry

Action of O(d,d)

 $T \oplus T^*$

 G, B_2

Generalised metric

Type II: $O(d,d) \longrightarrow E_{d+1}$, add RR fields

Type I Extended Geometry

Action of O(d,d)

 $T \oplus T^*$

 G, B_2

Generalised metric

Type II Extended Geometry $d \le 4$

Action of E_{d+1}

 $T \oplus T^* \oplus S^{\pm}$

 G, B_2, Φ, C^{\mp}

cf Brane charges

Generalised metric

\mathcal{H}_{IJ}	\in	E_{d+1}
		$\overline{H_{d+1}}$

 $\begin{array}{ll} \mathsf{IIB} & C^+ \\ \mathsf{IIA} & C^- \end{array}$

 $C_0 + C_2 + C_4 + \dots$ $C_1 + C_3 + C_5 + \dots$

RR fields

Type II Extended Geometry $d \le 6$

Action of E_{d+1}

Type M Extended Geometry $d \le 4$

Action of E_d

 $T\oplus \Lambda^2 T^*$

 G, C_3

cf Brane charges

Generalised metric

$$\mathcal{H}_{IJ} \in \frac{E_d}{H_d}$$

Type M Extended Geometry $d \le 7$

Action of E_d

 $T \oplus \Lambda^2 T^* \oplus \Lambda^5 T^* \oplus \Lambda^6 T$

 G, C_3, \tilde{C}_6

cf Brane charges

Generalised metric

$$\mathcal{H}_{IJ} \in \frac{E_d}{H_d}$$

 More general non-geometric backgrounds. Gives uplift of GENERIC gauged Sugras
 Shelton, Taylor & Wecht 2005

Dabholkar & Hull 2005

 Explicit doubled geometries constructed for T-folds and "spaces with R-flux"

Hull & Reid-Edwards 2008-9

- Sigma models on doubled spaces; quantisation Hull 2004-6
- Other approaches to quantisation

Tseytlin; Berman, Thompson, Copland; Hackett-Jones & Motsopoulos

Strings on T^d

$$X = X_L(\sigma + \tau) + X_R(\sigma - \tau), \qquad \tilde{X} = X_L - X_R$$

X conjugate to momentum, \tilde{X} to winding no.

$$dX = *d\tilde{X} \qquad \qquad \partial_a X = \epsilon_{ab} \partial^b \tilde{X}$$

Strings on T^d

 $X = X_L(\sigma + \tau) + X_R(\sigma - \tau), \qquad \tilde{X} = X_L - X_R$

X conjugate to momentum, \tilde{X} to winding no.

$$dX = *d\tilde{X} \qquad \qquad \partial_a X = \epsilon_{ab} \partial^b \tilde{X}$$

Need "auxiliary" \tilde{X} for interacting theory i) Vertex operators $e^{ik_L \cdot X_L}$, $e^{ik_R \cdot X_R}$ ii) String field Kugo & Zwiebach $\Phi[x, \tilde{x}, a, \tilde{a}]$

Strings on T^d

 $X = X_L(\sigma + \tau) + X_R(\sigma - \tau), \qquad \tilde{X} = X_L - X_R$

X conjugate to momentum, \tilde{X} to winding no. $dX = *d\tilde{X}$ $\partial_a X = \epsilon_{ab} \partial^b \tilde{X}$

Strings on torus see **DOUBLED GEOMETRY**! **T-duality** group $O(d, d; \mathbb{Z})$

Doubled Torus 2d coordinates Transform linearly under $O(d, d; \mathbb{Z})$ $X \equiv \begin{pmatrix} \tilde{x}_i \\ x^i \end{pmatrix}$ Sigma model on doubled torus **Tseytlin; Hull**

T-Duality

- Space has d-torus fibration
- G,B on fibres
- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology $E \rightarrow (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d, d; Z) \qquad E_{ij} = G_{ij} + B_{ij}$ On circle, radius R: $O(1, 1; \mathbb{Z}) = \mathbb{Z}_2 : R \mapsto \frac{1}{R}$

 X^i

 Y^m

T-Duality

- Space has d-torus fibration
- G,B on fibres
- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology $E \rightarrow (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d, d; Z) \qquad E_{ij} = G_{ij} + B_{ij}$ On circle, radius R: $O(1, 1; \mathbb{Z}) = \mathbb{Z}_2 : R \mapsto \frac{1}{R}$

 X^i

 Y^m