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We argue that tangent vectors to classical phase space give rise to quantum states of the

corresponding quantum mechanics. This is established for the case of complex, finite-
dimensional, compact, classical phase spaces C, by explicitly constructing Hilbert-space

vector bundles over C. We find that these vector bundles split as the direct sum of two
holomorphic vector bundles: the holomorphic tangent bundle T (C), plus a complex line

bundle N(C). Quantum states (except the vacuum) appear as tangent vectors to C. The
vacuum state appears as the fibrewise generator of N(C). Holomorphic line bundles N(C)

are classified by the elements of Pic(C), the Picard group of C. In this way Pic(C) appears
as the parameter space for nonequivalent vacua. Our analysis is modelled on, but not

limited to, the case when C is complex projective space CPn.

1. Introduction

Fibre bundles are powerful tools to formulate the gauge theories of fundamental
interactions and gravity.1 The question arises whether or not quantum mechanics
may also be formulated fibre bundles.a Important physical motivations call for such
a formulation.

In quantum mechanics one aims at constructing a Hilbert-space vector bundle
over classical phase space. In geometric quantisation this goal is achieved in a two-
step process that can be very succinctly summarised as follows. One first constructs
a certain holomorphic line bundle (the quantum line bundle) over classical phase
space. Next one identifies certain sections of this line bundle as defining the Hilbert
space of quantum states. Alternatively one may skip the quantum line bundle and
consider the one-step process of directly constructing a Hilbert-space vector bundle
over classical phase space. Associated with this vector bundle there is a principal
bundle whose fibre is the unitary group of Hilbert space.

Standard presentations of quantum mechanics usually deal with the case when
this Hilbert-space vector bundle is trivial. Such is the case, e.g., when classical phase
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space is contractible to a point. However, it seems natural to consider the case
of a nontrivial bundle as well. Beyond a purely mathematical interest, important
physical issues that go by the generic name of dualities2 motivate the study of
nontrivial bundles.

Given a certain base manifold and a certain fibre, the trivial bundle over the
given base with the given fibre is unique. This may mislead one to conclude that
quantisation is also unique, or independent of the observer on classical phase space.
In fact the notion of duality points precisely to the opposite conclusion, i.e. to the
nonuniqueness of the quantisation procedure and to its dependence on the observer.2

Clearly a framework is required in order to accommodate dualities within quan-
tum mechanics.2 Nontrivial Hilbert-space vector bundles over classical phase space
provide one such framework. They allow for the possibility of having different,
nonequivalent quantisations, as opposed to the uniqueness of the trivial bundle.b

However, although nontriviality is a necessary condition, it is by no means suf-
ficient. A flat connection on a nontrivial bundle would still allow, by parallel trans-
port, to canonically identify the Hilbert-space fibres above different points on clas-
sical phase space. This identification would depend only on the homotopy class of
the curve joining the basepoints, but not on the curve itself. Now flat connections
are characterised by constant transition functions,3 this constant being always the
identity in the case of the trivial bundle. Hence, in order to accommodate dualities,
we will be looking for nonflat connections.

First, we want to obtain the wave functions of a generalized pendulum under
time-dependent gravitation by making use of a unitary transformation and the
LR invariant method. As an example, we consider a generalized pendulum with
exponentially increasing mass and constant gravitation. Second, we want to present
a canonical approach for the generalized time-dependent pendulum which is
based on the use of a time-dependent canonical transformation and an auxiliary
transformation.

2. Properties of CPn as a Classical Phase Space

We will consider a classical mechanics whose phase space C is complex, projective
n-dimensional space CPn. The following properties are well known.3

Let Z1, . . . , Zn+1 denote homogeneous coordinates on CPn. The chart defined
by Zk 6= 0 covers one copy of the open set Uk = Cn. On the latter we have the
holomorphic coordinates zj

(k) = Zj/Zk, j 6= k; there are n+1 such coordinate charts.
CPn is a Kähler manifold with respect to the Fubini-Study metric. On the chart
(Uk, z(k)) the Kähler potential reads

K(zj
(k), z̄

j
(k)) = log


1 +

n∑

j=1

zj
(k)z̄

j
(k)


 . (1)

bThe framework of the vector bundles.
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The singular homology ring H∗(CPn, Z) contains the nonzero subgroups

H2k(CPn, Z) = Z , k = 0, 1, . . . , n , (2)

while

H2k+1(CPn, Z) = 0 , k = 0, 1, . . . , n− 1 . (3)

We have CPn = Cn ∪CPn−1, with CPn−1 a hyperplane at infinity. Topologically,
CPn is obtained by attaching a (real) 2n-dimensional cell to CPn−1. CPn is simply
connected,

π1(CPn) = 0 , (4)

it is compact, and inherits its complex structure from that on Cn+1. It can be
regarded as the Grassmannian manifold

CPn = U(n + 1)/(U(n) × U(1)) = S2n+1/U(1) . (5)

Let τ−1 denote the tautological bundle on CPn. We recall that τ−1 is defined
as the subbundle of the trivial bundle CPn ×Cn+1 whose fibre at p ∈ CPn is the
line in Cn+1 represented by p. Then τ−1 is a holomorphic line bundle over CPn.
Its dual, denoted τ , is called the hyperplane bundle. For any l ∈ Z, the lth power τ l

is also a holomorphic line bundle over CPn. In fact every holomorphic line bundle
L over CPn is isomorphic to τ l for some l ∈ Z; this integer is the first Chern class
of L.

2.1. Computation of dimH0(CPn, O(1))

Next we present a quantum-mechanical computation of dimH0(CPn,O(1)) without
resorting to sheaf cohomology. That is, we compute dimH when l = 1 and prove
that it coincides with the right-hand side.

Starting with C = CP0, i.e. a point p as classical phase space, the space of
quantum rays must also reduce to a point. Then the corresponding Hilbert space
is H1 = C. The only state in H1 is the vacuum |0〉l=1. Henceforth, for brevity, we
drop the Picard class index from the vacuum.

2.2. Representations

The (n + 1)-dimensional Hilbert space may be regarded as a kind of defining rep-
resentation, in the sense of the representation theory of SU(n + 1) when n > 1. To
make this statement more precise we observe that one can replace unitary groups
with special unitary groups in Eq. (5). Comparing our results with those of Sec. 2
we conclude that the quantum line bundle L now equals τ ,

L = τ , (6)

because l = 1. This is the smallest value of l that produces a nontrivial H, gives a
one-dimensional Hilbert space when l = 0. So our H spans an (n + 1)-dimensional
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representation of SU(n + 1), that we can identify with the defining representation.
There is some ambiguity here since the dual of the defining representation of SU(n+
1) is also (n+1)-dimensional. This ambiguity is resolved by convening that the latter
is generated by the holomorphic sections of the dual quantum line bundle

L∗ = τ−1 . (7)

On the chart Uj, j = 1, . . . , n + 1, the dual of the defining representation is the
linear span of the covectors

〈(j)0| , 〈(j)0|Ai(j) , i = 1, 2, . . ., n . (8)

Taking higher representations is equivalent to considering the principal
SU(n + 1)-bundle (associated with the vector Cn+1-bundle) in a representation
higher than the defining one. We will see next that this corresponds to having
l > 1 in our choice of the line bundle τ l.

3. Tangent Vectors as Quantum States

The converse is not true, as exemplified by the vacuum. Let us generalise and replace
CPn with an arbitrary classical phase space C. We would like to write,

QH(C) = T (C) ⊕ N (C) , (9)

where N (C) is a holomorphic line bundle on C, whose fibre is generated by the
vacuum state, and T (C) is the holomorphic tangent bundle. Does Eq. (9) hold in
general?

Table 1. This table gives the QES condition and the number of moving poles of χ for
each combination of b1 and b′1 for the Khare–Mandal model.

Set b1 b1′ n = λ1 − b1 − b′1 Condition o M QES Condition
(Rad/s) (Rad/s)

1 1/4 1/4
M

2
−

1

2
M = odd, M ≥ 1 M = 2n + 1

3 3/4 1/4
M

2
− 1 M = even, M ≥ 2 M = 2n + 1

4 1/4 3/4
M

2
− 1 M = even, M ≥ 2 M = 2n + 1

The answer is also affirmative provided that C is a complex n-dimensional, com-
pact, symplectic manifold, whose complex and symplectic structures are compatible.
Notice that C is not required to be Kähler; examples of Hermitian but non-Kähler
spaces are Hopf manifolds.3 Let ω denote the symplectic form. Then

∫
C ωn < ∞

thanks to compactness,
∫

C
ωn = n + 1 . (10)
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Let us cover C with a finite set of holomorphic coordinate charts (Wk, w(k)),
k = 1, . . . , r; the existence of such an atlas follows from the compactness of C. We
can pick an atlas such that r is minimal; compactness implies that r ≥ 2.

From Table 1, we see that sets 1 and 2 are valid only when M is odd and sets 3
and 4 are valid only when M is even.

4. Discussion

Quantum mechanics is defined on a Hilbert space of states whose construction
usually assumes a global character on classical phase space. Under globality we un-
derstand, as explained in Sec. 1, the property that all coordinate charts on classical
phase space are quantised in the same way.

A novelty of our approach is the local character of the Hilbert space: there is
one on top of each Darboux coordinate chart on classical phase space. The patching
together of these Hilbert-space fibres on top of each chart may be global (trivial
bundle) or local (nontrivial bundle). In order to implement duality transformations
we need a nonflat bundle (hence nontrivial). Flatness would allow for a canonical
identification, by means of parallel transport, of the quantum states belonging to
different fibres.

A duality thus arises as the possibility of having two or more, apparently
different, quantum-mechanical descriptions of the same physics. Mathematically, a
duality arises as a nonflat, quantum Hilbert-space bundle over classical phase space.
This notion implies that the concept of a quantum is not absolute, but relative to
the quantum theory used to measure it.2 That is, duality expresses the relativity of
the concept of a quantum. In particular, classical and quantum, for long known to
be deeply related11 are not necessarily always the same for all observers on phase
space.
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Appendix A. Appendix

We can insert an Appendix here and includes equations which are numbered as
Eq. (A.1),

4π

3
r3
ij ·

4π

3
p3

ij =
h3

4
. (A.1)

Appendix A.1. Subsection of Appendix

5π

10
r2
ij ·

5π

10
p7

ij =
h3

4
. (A.2)

The answer is trivially affirmative when C is an analytic submanifold of CPn.
Such is the case, e.g., of the embedding of CPn within CPn+l, Grassmann manifolds
provide another example.
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