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Space-Time Foliation

SEH =
1

k

∫
d4x
√
−gR

Assumption on topology: M = Rxσ

Spacetime foliation with deformation vector: Tµ = Nnµ + Nµ

so the 3+1 Einstein-Hilbert action reads:

SEH =
1

k

∫
d3x dt(Pabq̇

ab − HGN − HG
a Na)
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Constraints and time evolution

Hamiltonian function: H =
∫

d3x
(
HGN + HG

a Na
)

Varying Na and N:

3-diff constraint: HG
a = −2P ;b

ab = 0

Hamiltonian constraint: HG = 1√
q

(
PabP

ab − P2

2

)
−√qR = 0

Wheeler-DeWitt Equation:

−i~ ∂
∂tψ = Ĥψ = 0

No Time Evolution
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Localization
Gaussian conditions and dust fluid

Localization: Reference Fluids

Fluid Particles =⇒ Space-Time points

Coordinate conditions Matter terms
(constraints on phase space) ⇑

⇓ Additional terms in the
Additional terms in the action Einstein Equations

L = LEH + λiVi =⇒ Gµν = Λµν

Explicit proof
Gaussian conditions ⇐⇒ Heat conducting dust
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Localization
Gaussian conditions and dust fluid

Gaussian conditions and broken diff-invariance

Gaussian conditions:

g00(X ) = 1

g0k(X ) = 0

Imposing such conditions on the action:

S = SEH +

∫
d3XdT

√
q(ε̄(N − N−1) + NηaN

a)

where (T ,X ) are gaussian coordinates, the vacuum constraints are
broken:

ε̄ = HG

2
√

q ηa =
HG

a√
q
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Localization
Gaussian conditions and dust fluid

Heat conducting dust

Diff-invariance can be recovered with label coordinates Xµ = Xµ(xα),
with the condition:

S(g , ε̄, ηa,X
µ = δµαxα) = S(g , ε̄, ηa).

Varying respect to the metric tensor gives the Einstein equations:

Gαβ =
1

2
Tαβ =

1√
−g

δSF

δgαβ
.

Which give:
Tαβ = εUαUβ + η(αUβ),

where Uα := −gαβT,β is the 4-velocity in the Gaussian frame.

Energy-momentum tensor for a heat conducting dust
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Solving the matter term
Physical Hamiltonian

The Brown-Kuchǎr mechanism

Additional matter term in the action:

SF =
∫

d4x
√
−gLF (−∂µφ∂µφ) =

∫
d4x
√
−gLF (Υ)

with the ADM formalism

⇓

Time derivatives φ̇ = LTφ = ∂µφTµ

Separation between spatial and normal d.o.f. gµν = −nµnν + qµν

Υ = (−∂µφnµ)2 − ∂aφ∂
aφ = (φn)2 − V

⇓

Conjugate momentum: π = δSF

δφ̇
= 2
√

qφn
δLF

δΥ
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Schutz baryonic perfect fluid
Conclusions

Solving the matter term
Physical Hamiltonian

The Brown-Kuchǎr mechanism
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Solving the matter term
Physical Hamiltonian

Legendre transform

Solving:

π2 =
[
δLF

δΥ (Υ)
]2

4(V −Υ)q

Υ = (φn)2 − V

One gets:

Υ = Υ̃(π,V )

φn = F̃ (π,V ) = π
2
√

q

[
δLF

δΥ (Υ̃)
]−1

So that the Hamiltonian contains only π and V :

H =
∫

d3x
[
π∂aφNa −√qN

(
LF − π2

2q

(
δLF

δΥ

)−1
)
|Υ=Υ̃ + NHG + NaHG

a

]
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Solving the matter term
Physical Hamiltonian

Contraints

General Relativity + Fluid:

Ha = HG
a + π∂aφ=0

H =
√

q
(
LF − π2

2q

(
δLF

δΥ

)−1
)
|Υ=Υ̃ + HG = 0

Squarring the super-momentum:

V =
HG

a HG
b qab

π2
=

d

π2

One can define a new constraint equivalent to the super-Hamiltonian:

π − h(HG , d , q) = 0

To be used to define the Physical Hamiltonian
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Solving the matter term
Physical Hamiltonian

Physical Hamiltonian

π − h(HG , d , q) = 0 Schrödinger-like operator

Physical Hamiltonian:

Hphys =

∫
d3xh(x)

Necessary conditions:

Invariance under the action of the super-Hamiltonian contraint

Invariance under the action of the 3-diff constraint

Indipendence from π and φ

Allows the definition of a time evolution for observables:

−dO(t)

dt
= {Hphys ,O(t)}
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The perfect fluid model
Canonical formulation
Coupling with GR
Physical Hamiltonian

The perfect fluid model

velocity potential representation of hydrodynamics

come directly from termodynamical principles

6 scalar fields: φ, α, β, θ, S , µ

S entropy per baryon

µ specific inertial mass

No trivial interpretation for the other fields

4-velocity:

Uν = µ−1(φ,ν + αβ,ν + θS,ν) = vνµ
−1

Equation of state:

p = ρ0(µ− TS)

Reproduces all hydrodynamics

Giovanni Montani, Simone Zonetti Fluid entropy as time evolution operator in canonical quantum gravity



Outline
The problem of time

Matter/Reference-Frame Dualism
The Brown-Kuchǎr mechanism
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The perfect fluid model
Canonical formulation
Coupling with GR
Physical Hamiltonian

Canonical formulation 1/2

Schutz fluid action:

SF =

∫
d4x
√
−gp =

∫
d4x
√
−gρ0(

√
−vµvµ − TS),

Just one independent conjugate momentum:

pφ =
√

qρ0µ
−1vµn

µ = π

pα = 0

pβ =
√

qρ0µ
−1αvn = απ

pθ = 0

pS =
√

qρ0µ
−1θvn = θπ

⇓
Constrained theory

No secondary constraints

Giovanni Montani, Simone Zonetti Fluid entropy as time evolution operator in canonical quantum gravity
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The perfect fluid model
Canonical formulation
Coupling with GR
Physical Hamiltonian

Canonical formulation 2/2

Hamiltonian density:

HF = N
[
± π2

√
V√

π2 − qρ2
0

±πφµnµ± v aφa

√
π2 − qρ2

0

V
+
√

qρ0ST
]

+ Nav
aπ

Cannot complete the Legendre trasfrom without further conditions.
Equations of motion:

π̇ =⇒ (ρ0Uµ);µ = 0

α̇ =⇒ Uµα
µ = 0

β̇ =⇒ Uµβ
µ = 0

θ̇ =⇒ Uµθ
µ = T

Ṡ =⇒ UµS
µ = 0

so that Uµ = µ−1φµ when equations of motion hold

on-shell the Hamiltonian density is well defined.
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The perfect fluid model
Canonical formulation
Coupling with GR
Physical Hamiltonian

Coupling with General Relativity

Constraints:

- Primary constraints ⇒ Union of the primary constraints of
uncoupled models

- Secondary constraints:

H =±

√
V

π2 − qρ2
0

(
ξπ2 + χqρ2

0

)
+
√

qρ0ST + HG = 0

Ha =πφa + HG
a = 0

where ξ = (3, 1) e χ = ±1

One has to get rid of multiple cases
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The perfect fluid model
Canonical formulation
Coupling with GR
Physical Hamiltonian

Comoving frame and multiple solutions

Solving the super-Hamiltonian respect to π:

π = h(ξ, χ . . .)

In the comoving frame (Uµ = nµ):

π̄ = −√qρ0

H̄ =
√

qρ0ST + HG = 0

H̄a = HG
a = 0

So it must be: π̄ = h̄(ξ, χ . . .)

and one is left with just ξ = 1 e χ = 1
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Physical Hamiltonian

The equivalent super-Hamiltonian constraints reads:

π = −√qρ0

√√√√(2d + H̄2 ± H̄
√

8d + H̄2
)

2
(
d − H̄2

) = h

where H̄ =
√

qρ0ST + HG

Necessary conditions are satisfied

⇓

{Hphys ,Of (τ)} = − δ

δφ
Of (τ),

⇓
Evolutionary behaviour of the system

The Entropy field is linked with evolution
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Entropy as a time variable

In the comoving frame:

π̄ = −√qρ0 =⇒ π = HG

ST

H̄ =
√

qρ0ST + HG = 0 =⇒ √
qρ0 = −HG

ST
H̄a = HG

a = 0

From the definition of pS = θπ

SpS = θHG

T = h̃

So defining lnS = τ

− dO(τ)
dlnS = {Hphys ,O(τ)} = − dO(τ)

dτ

Entropy is the time variable
Giovanni Montani, Simone Zonetti Fluid entropy as time evolution operator in canonical quantum gravity
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Conclusions

- Schutz model allows the application of the Brown-Kuchǎr

mechanism, so that a physical Hamiltonian appears

- Entropy per baryon is linked with the time evolution of the system

- In the comoving frame Entropy, through its log, IS the time variable

- In the comoving frame the Physical Hamiltonian is rather simple
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