Thermalization of pair plasma with proton loading

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin

ICRANet

Pescara, 9 July 2008

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 1 / 22

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pair plasma in GRBs

Why e^+e^- pairs?

• Energy range: $10^{48} < E_0 < 10^{54}$ erg

(isotropic energy release, fraction of stellar mass)

• Size range: $10^6 < R_0 < 10^8$ cm

(time variability, NS-BH size) Optical depth for pair production: $\tau = \sigma_T n_\gamma R \approx \sigma_T E_0 / R_0^2 \gg 1$. Why baryons?

- Time duration of the whole burst, spectrum
- Progenitors of GRBs: massive stars, NS

Issues:

- I Microphysics: processes, baryonic loading, ...
- ② Macrophysics: global dynamics, geometry, …
- ③ Radiation: mechanisms, transparency, …

• We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim \frac{\epsilon}{MeV} \lesssim 10$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim rac{\epsilon}{MeV} \lesssim 10.$
- The plasma parameter $\mathfrak{g} = (n_-d^3)^{-1}$, $d = \sqrt{\frac{k_B T_-}{4\pi e^2 n_-}} = \frac{c}{\omega} \sqrt{\theta_-}$ is the Debye length, $\theta_- = k_B T_-/(mc^2)$, $\omega = \sqrt{4\pi e^2 n_-/m}$ is the plasma frequency.

- We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim \frac{\epsilon}{\text{MeV}} \lesssim 10.$
- The plasma parameter $\mathfrak{g} = (n_-d^3)^{-1}$, $d = \sqrt{\frac{k_BT_-}{4\pi e^2 n_-}} = \frac{c}{\omega}\sqrt{\theta_-}$ is the Debye length, $\theta_- = k_BT_-/(mc^2)$, $\omega = \sqrt{4\pi e^2 n_-/m}$ is the plasma frequency.
- The classicality parameter *κ* = e²/(*hv_r*) = α/β_r, *v_r* = β_rc is mean relative velocity of particles. *κ* ≫ 1 (*κ* ≪ 1): classical (quantum) description of scattering.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim \frac{\epsilon}{\text{MeV}} \lesssim 10.$
- The plasma parameter $\mathfrak{g} = (n_-d^3)^{-1}$, $d = \sqrt{\frac{k_BT_-}{4\pi e^2 n_-}} = \frac{c}{\omega}\sqrt{\theta_-}$ is the Debye length, $\theta_- = k_BT_-/(mc^2)$, $\omega = \sqrt{4\pi e^2 n_-/m}$ is the plasma frequency.
- The classicality parameter $\varkappa = e^2/(\hbar v_r) = \alpha/\beta_r$, $v_r = \beta_r c$ is mean relative velocity of particles. $\varkappa \gg 1$ ($\varkappa \ll 1$): classical (quantum) description of scattering.
- The Coulomb logarithm $\Lambda = \mathcal{M} dv_r / \hbar$, where \mathcal{M} is the reduced mass.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim \frac{\epsilon}{MeV} \lesssim 10$.
- The plasma parameter $\mathfrak{g} = (n_-d^3)^{-1}$, $d = \sqrt{\frac{k_BT_-}{4\pi e^2 n_-}} = \frac{c}{\omega}\sqrt{\theta_-}$ is the Debye length, $\theta_- = k_BT_-/(mc^2)$, $\omega = \sqrt{4\pi e^2 n_-/m}$ is the plasma frequency.
- The classicality parameter $\varkappa = e^2/(\hbar v_r) = \alpha/\beta_r$, $v_r = \beta_r c$ is mean relative velocity of particles. $\varkappa \gg 1$ ($\varkappa \ll 1$): classical (quantum) description of scattering.
- The Coulomb logarithm $\Lambda = \mathcal{M} dv_r / \hbar$, where \mathcal{M} is the reduced mass.
- Intensity of interactions between photons and other particles $\tau = n\sigma R$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

3 / 22

- We consider mildly relativistic plasma, the average energy per particle $0.1 \lesssim \frac{\epsilon}{MeV} \lesssim 10$.
- The plasma parameter $\mathfrak{g} = (n_-d^3)^{-1}$, $d = \sqrt{\frac{k_BT_-}{4\pi e^2 n_-}} = \frac{c}{\omega}\sqrt{\theta_-}$ is the Debye length, $\theta_- = k_BT_-/(mc^2)$, $\omega = \sqrt{4\pi e^2 n_-/m}$ is the plasma frequency.
- The classicality parameter $\varkappa = e^2/(\hbar v_r) = \alpha/\beta_r$, $v_r = \beta_r c$ is mean relative velocity of particles. $\varkappa \gg 1$ ($\varkappa \ll 1$): classical (quantum) description of scattering.
- The Coulomb logarithm $\Lambda = \mathcal{M} dv_r / \hbar$, where \mathcal{M} is the reduced mass.
- Intensity of interactions between photons and other particles $\tau = n\sigma R$.
- Plasma degeneracy $\theta_F = \left[\left(\frac{\hbar}{mc}\right)^2 \left(3\pi^2 n_-\right)^{\frac{2}{3}} + 1 \right]^{1/2} 1.$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa

3

• One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa Pescara, 9 July 2008 4 / 22

- $\bullet\,$ One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$
- Quantum cross-sections for all particles since $\varkappa < 1$;

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loz Pescara, 9 July 2008 4 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \bullet One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$
- Quantum cross-sections for all particles since $\varkappa < 1$;
- Coulomb logarithm is a function of energy $\Lambda(\epsilon)$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \bullet One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$
- Quantum cross-sections for all particles since $\varkappa < 1$;
- Coulomb logarithm is a function of energy $\Lambda(\epsilon);$
- Plasma linear dimensions *R* exceed photon mean free path $l = (n_{-}\sigma)^{-1}$, thus $\tau \gg 1$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \bullet One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$
- Quantum cross-sections for all particles since $\varkappa < 1$;
- Coulomb logarithm is a function of energy $\Lambda(\epsilon)$;
- Plasma linear dimensions R exceed photon mean free path $l = (n_{-}\sigma)^{-1}$, thus $\tau \gg 1$.
- In our energy range $\epsilon \lesssim 10~{\rm MeV}$ the plasma is non-degenerate $\theta_F > \theta_{th}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \bullet One-particle distribution functions since $\mathfrak{g}\sim 10^{-3};$
- Quantum cross-sections for all particles since $\varkappa < 1$;
- Coulomb logarithm is a function of energy $\Lambda(\epsilon)$;
- Plasma linear dimensions *R* exceed photon mean free path $I = (n_{-}\sigma)^{-1}$, thus $\tau \gg 1$.
- In our energy range $\epsilon \lesssim$ 10 MeV the plasma is non-degenerate $\theta_F > \theta_{th}.$
- Natural parameters for perturbative expansion are α and m/M.

Proton loading

When admixture of **protons** and electrons is allowed it is characterized by a new parameter, the baryonic loading

$$\mathbf{B} = \frac{NMc^2}{\mathcal{E}_{\gamma}} = \frac{n_{\rho}Mc^2}{\rho_{\gamma}}.$$
 (1)

In equilibrium, while e^+e^- are relativistic, $\epsilon_{\pm} \sim mc^2 \sim k_B T$, protons are not $Mv_p^2 \sim k_B T$, and thus

$$\frac{v_p}{c} \sim \sqrt{\frac{m}{M}}.$$

Also in equilibrium with $\epsilon_{\pm} \geq mc^2$ we have $ho_{\pm} pprox n_{\pm}mc^2$ and thus

$$rac{n_p}{n_\pm} \sim rac{m}{M} B$$

If in addition **neutrons** are present, they are coupled to protons by elastic nuclear scattering.

Pair plasma is transparent to neutrinos.

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa

Binary interactions	Radiative and pair producing variants
Møller and Bhabha scattering	Bremsstrahlung
$e_1^\pm e_2^\pm \longrightarrow e_1^{\pm\prime} e_2^{\pm\prime} \ e^\pm e^\mp \longrightarrow e^{\pm\prime} e^{\mp\prime}$	$e_1^\pm e_2^\pm \longleftrightarrow e_1^{\pm \prime} e_2^{\pm \prime} \gamma \ e^\pm e^\mp \longleftrightarrow e^{\pm \prime} e^{\mp \prime} \gamma$
Single Compton scattering	Double Compton scattering
$e^{\pm}\gamma \longrightarrow e^{\pm}\gamma'$	$e^{\pm}\gamma \longleftrightarrow e^{\pm \prime}\gamma^{\prime}\gamma^{\prime\prime}$
Pair production	Radiative pair production
and annihilation	and three photon annihilation
$\gamma\gamma'\longleftrightarrow e^\pm e^\mp$	$\gamma\gamma'\longleftrightarrow e^\pm e^\mp\gamma''$
	$e^{\pm}e^{\mp}\longleftrightarrow\gamma\gamma^{\prime}\gamma^{\prime\prime}$
	$e^{\pm}\gamma \longleftrightarrow e^{\pm'}e^{\mp}e^{\pm''}$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton lo: Pescara, 9 July 2008 6 / 22

Binary interactions	Radiative and pair producing variants
Coulomb scattering	Bremsstrahlung
$p_1 p_2 \longrightarrow p'_1 p'_2$	$p_1p_2 \longleftrightarrow p_1'p_2'\gamma$
$pe^{\pm} \longrightarrow p'e^{\pm \prime}$	$pe^{\pm} \longleftrightarrow p'e^{\pm \prime}\gamma$
	$pe_1^\pm \longleftrightarrow p'e_1^{\pm'}e^\pm e^\mp$
Single Compton scattering	Double Compton scattering
	and radiative pair production
$p\gamma \longrightarrow p'\gamma'$	$p\gamma \longleftrightarrow p'\gamma'\gamma''$
	$p\gamma \longleftrightarrow p'e^\pm e^\mp$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 7 / 22

・ロト ・ 日 ・ ・ 田 ト ・ 日 ト ・ 日 ト

• Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T nc)^{-1}$;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T nc)^{-1}$;
- Cooling: $t_{br} = \alpha^{-1} t_c$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Timescales

- Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T n c)^{-1}$;
- Cooling: $t_{br} = \alpha^{-1} t_c$;
- Expansion timescale: $t_{hyd} \sim c/R_0$;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Timescales

- Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T nc)^{-1}$;
- Cooling: $t_{br} = \alpha^{-1} t_c$;
- Expansion timescale: $t_{hyd} \sim c/R_0$;
- Proton-proton:

$$(n_{\rho}t_{\rho\rho})^{-1} \approx \sqrt{\frac{m}{M}} (n_{-}t_{ee})^{-1}, \qquad v_{\rho} \approx \sqrt{\frac{m}{M}} v_{e}, \qquad v_{e} \approx c;$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T n c)^{-1}$;
- Cooling: $t_{br} = \alpha^{-1}t_c$;
- Expansion timescale: $t_{hyd} \sim c/R_0$;
- Proton-proton:
 - $(n_p t_{pp})^{-1} \approx \sqrt{\frac{m}{M}} (n_- t_{ee})^{-1}$, $v_p \approx \sqrt{\frac{m}{M}} v_e$, $v_e \approx c$;
- Electron-proton: $t_{ep}^{-1} \approx \frac{\epsilon_{\pm}}{Mc^2} t_{ee}^{-1}$, $\epsilon_{\pm} \ll \epsilon_{p}$;

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Pair production, Compton and electron-electron scattering: $t_{\gamma e} \sim t_{\gamma e} \sim (\sigma_T n c)^{-1}$;
- Cooling: $t_{br} = \alpha^{-1}t_c$;
- Expansion timescale: $t_{hyd} \sim c/R_0$;
- Proton-proton:
 - $(n_p t_{pp})^{-1} \approx \sqrt{\frac{m}{M}} (n_- t_{ee})^{-1}, \qquad v_p \approx \sqrt{\frac{m}{M}} v_e, \qquad v_e \approx c;$
- Electron-proton: $t_{ep}^{-1} \approx \frac{\epsilon_{\pm}}{Mc^2} t_{ee}^{-1}$, $\epsilon_{\pm} \ll \epsilon_p$;
- Proton Compton scattering: $(n_{\rho}t_{\gamma\rho})^{-1} \approx \left(\frac{\epsilon}{Mc^{2}}\right)^{2} (n_{-}t_{\gamma e})^{-1}, \qquad \epsilon \geq mc^{2}.$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc

Pescara, 9 July 2008 8 / 22

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Relativistic Boltzmann equations in spherically symmetric case

$$\frac{1}{c}\frac{\partial f_i}{\partial t} + \beta_i \left(\mu \frac{\partial f_i}{\partial r} + \frac{1-\mu^2}{r}\frac{\partial f_i}{\partial \mu}\right) - \nabla U \frac{\partial f_i}{\partial \mathbf{p}} = \sum_q \left(\eta_i^q - \chi_i^q f_i\right), \quad (2)$$

where $\mu = \cos \vartheta = \mathbf{r} \cdot \mathbf{p}$, U is a potential due to some external force, $\beta_i = v_i/c$, $f_i(\epsilon, t)$ are distribution functions, and η_i^q and χ_i^q are the emission and the absorption coefficients. This is a coupled system of partial-integro-differential equations.

For homogeneous and isotropic distribution functions of electrons, positrons and photons (2) reduces to

$$\frac{1}{c}\frac{\partial f_i}{\partial t} = \sum_q \left(\eta_i^q - \chi_i^q f_i\right). \tag{3}$$

In (3) we also explicitly neglect the Vlasov term.

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa

・ロト ・ 直 ト ・ 直 ト ・ 目 ・ うへぐ

Collisional integrals 1: probability

Differential probability for all processes per unit time and unit volume $(\hbar = c = 1)$

$$dw = (2\pi)^4 \delta^{(4)} (P_f - P_i) rac{|M_{fi}|^2}{\prod\limits_b 2\epsilon_b} \prod_a rac{d\mathbf{p}_a'}{(2\pi\hbar)^3},$$

where \mathbf{p}'_{a} are momenta of outgoing particles, ϵ_{b} are energies of particles before and after interaction, M_{fi} are corresponding matrix elements, $\delta^{(4)}$ stands for energy-momentum conservation.

As example consider absorption coefficient for Compton scattering

$$\chi^{\gamma e^{\pm}
ightarrow \gamma' e^{\pm \prime}} f_{\gamma} = \int d\mathbf{k}' d\mathbf{p} d\mathbf{p}' w_{\mathbf{k}',\mathbf{p}';\mathbf{k},\mathbf{p}} f_{\gamma}(\mathbf{k},t) f_{\pm}(\mathbf{p},t),$$

where **p** and **k** are momenta of electron (positron) and photon respectively, $d\mathbf{p} = d\epsilon_{\pm} do\epsilon_{\pm}^2 \beta_{\pm} / c^3$, $d\mathbf{k}' = d\epsilon'_{\gamma} \epsilon'^2_{\gamma} do'_{\gamma} / c^3$.

Collisional integrals 2: integration over momentum

We can perform one integration over $d\mathbf{p}'$ as $\int d\mathbf{p}' \delta(d\mathbf{k} + d\mathbf{p} - d\mathbf{k}' - d\mathbf{p}') \rightarrow 1$, but it is necessary to take into account the momentum conservation in the next integration over $d\mathbf{k}'$,

$$\int d\epsilon'_{\gamma} \delta(\epsilon_{\gamma} + \epsilon_{\pm} - \epsilon'_{\gamma} - \epsilon'_{\pm}) = \ = \int d(\epsilon'_{\gamma} + \epsilon'_{\pm}) rac{1}{|\partial(\epsilon'_{\gamma} + \epsilon'_{\pm})/\partial\epsilon'_{\gamma}|} \delta(\epsilon_{\gamma} + \epsilon_{\pm} - \epsilon'_{\gamma} - \epsilon'_{\pm})
ightarrow \
ightarrow rac{1}{|\partial(\epsilon'_{\gamma} + \epsilon'_{\pm})/\partial\epsilon'_{\gamma}|} \equiv J_{
m cs},$$

where the Jacobian of the transformation is

$$J_{\rm cs} = \frac{1}{1 - \beta'_{\pm} \mathbf{b}'_{\gamma} \cdot \mathbf{b}'_{\pm}},\tag{4}$$

where
$$\mathbf{b}_i = \mathbf{p}_i / p$$
, $\mathbf{b}'_i = \mathbf{p}'_i / p'$, $\mathbf{b}'_{\pm} = (\beta_{\pm} \epsilon_{\pm} \mathbf{b}_{\pm} + \epsilon_{\Box \gamma} \mathbf{b}_{\gamma} - \epsilon'_{\gamma \equiv \gamma} \mathbf{b}'_{\gamma})_{A_{\pm}} (\beta'_{\pm} \epsilon'_{\pm})_{C_{\pm} \circ \circ}$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 11 / 22

Collisional integrals 3: three-particle interactions

Finally, for the absorption coefficient

$$\chi^{\gamma e^{\pm} \to \gamma' e^{\pm'}} f_{\gamma} = -\int do_{\gamma}' d\mathbf{p} \frac{c \epsilon_{\gamma}' |M_{f_{f}}|^{2}}{16 \epsilon_{\pm} \epsilon_{\gamma} \epsilon_{\pm}' c^{3} (2\pi\hbar)^{2}} J_{cs} f_{\gamma}(\mathbf{k}, t) f_{\pm}(\mathbf{p}, t),$$

As example of 3-particle reaction consider relativistic bremsstrahlung $e_1 + e_2 \leftrightarrow e'_1 + e'_2 + \gamma'$. For the time derivative, for instance, of the distribution function f_2 one has

$$egin{aligned} \dot{f}_2 &= \int dp_2' dk' (2\pi)^4 \delta^{(4)} (P_f - P_i) rac{|M_{fi}|^2}{2^5 \epsilon_1 \epsilon_2 \epsilon_1' \epsilon_2' \epsilon_\gamma'} imes \ & imes \left(\int rac{d\mathbf{p}_1' f_k' d\mathbf{p}_1 f_1' f_2'}{(2\pi\hbar)^6} - \int rac{d\mathbf{p}_1 d\mathbf{p}_1' f_1 f_2}{(2\pi\hbar)^9}
ight). \end{aligned}$$

In the case of kinetic equilibrium we have multipliers proportional to $\exp \frac{\varphi}{k_B T}$ in front of the integrals. The calculation is then reduced to the known thermal equilibrium case. A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 12 / 22

Detailed balance conditions (pure pair plasma)

Consider distribution functions

$$f_{\gamma} = rac{1}{\exp\left(rac{arepsilon_{\gamma} - arphi_{\gamma}}{ heta_{\gamma}}
ight) - 1}, \qquad f_{\pm} = rac{1}{\exp\left(rac{arepsilon_{\pm} - arphi_{\pm}}{ heta_{\pm}}
ight) + 1},$$

where $\theta = kT/(mc^2)$ and $\varphi = \mu/(mc^2)$. Suppose $e^{\pm}\gamma \leftrightarrow e^{\pm}\gamma'$ is in detailed balance. This means reaction rate vanishes

$$f_{\pm}(1-f_{\pm}')f_{\gamma}(1+f_{\gamma}')=f_{\pm}'(1-f_{\pm})f_{\gamma}'(1+f_{\gamma}),$$

which leads to $\theta_{\gamma} = \theta_{\pm} \equiv \theta_k$. Analogous results for $e^{\pm}e^{\mp} \leftrightarrow \gamma_1\gamma_2$ leads to $\varphi_{\gamma} = \varphi_{\pm} \equiv \varphi_k$. Only triple reactions give $\varphi_k = 0!$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc

・ロット 4 回 > 4 回 > 4 回 > - 三 - ろので

Conservation laws

Energy conservation

$$\frac{d}{dt}\sum_{i}\rho_{i}=0, \quad \text{or} \quad \frac{d}{dt}\sum_{i,\omega}Y_{i,\omega}=0, \quad \text{where} \quad Y_{i,\omega}=\int_{\epsilon_{i,\omega}-\Delta\epsilon_{i,\omega}/2}^{\epsilon_{i,\omega}+\Delta\epsilon_{i,\omega}/2}E_{i}d\epsilon.$$

Particle's conservation for binary reactions

$$rac{d}{dt}\sum_{i}n_{i}=0, \quad ext{or} \quad rac{d}{dt}\sum_{i,\omega}rac{Y_{i,\omega}}{\epsilon_{i,\omega}}=0.$$

Baryonic number and charge conservation respectively

$$\frac{dn_p}{dt}=0,\quad n_-=n_++n_p,$$

The condition for the chemical potentials

$$\varphi_+ + \varphi_- = 2\varphi_\gamma.$$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa

Pescara, 9 July 2008 14 / 22

Kinetic equilibrium 1

For photons we have

$$n_{\gamma} = rac{1}{V_0} \exp\left(rac{
u_{\gamma}}{ heta}
ight) 2 heta^3, \qquad rac{
ho_{\gamma}}{n_{\gamma}mc^2} = 3 heta, \qquad V_0 = rac{1}{8\pi} \left(rac{2\pi\hbar}{mc}
ight)^3$$

for pairs

$$n_{\pm} = rac{1}{V_0} \exp\left(rac{
u_{\pm}}{\theta}
ight) j_1(heta), \qquad rac{
ho_{\pm}}{n_{\pm}mc^2} = j_2(heta),$$

and for protons

$$n_p = \frac{1}{V_0} \sqrt{\frac{\pi}{2}} \left(\frac{M}{m}\right)^{3/2} \exp\left(\frac{\nu_p - M/m}{\theta}\right) \theta^{3/2}, \qquad \frac{\rho_p}{M n_p c^2} = 1 + \frac{3}{2} \frac{m}{M} \theta,$$

15 / 22

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008

Summing up energy densities

$$\begin{split} \sum_{i} \rho_{i} &= \frac{mc^{2}}{V_{0}} \left\{ 6\theta^{4} \exp\left(\frac{\nu_{+}}{\theta}\right) \left[1 - \frac{n_{p}V_{0}}{j_{1}(\theta)} \exp\left(-\frac{\nu_{+}}{\theta}\right) \right]^{\frac{1}{2}} + j_{2}(\theta) \left[2j_{1}(\theta) \exp\left(\frac{\nu_{+}}{\theta}\right) - n_{p}V_{0} \right] + \frac{M}{m} \left(1 + \frac{3}{2}\frac{m}{M}\theta \right) n_{p}V_{0} \right\}, \end{split}$$

and analogously for number densities

$$\sum_{i} n_{i} = \frac{1}{V_{0}} \left\{ 6\theta^{4} \exp\left(\frac{\nu_{+}}{\theta}\right) \left[1 - \frac{n_{\rho}V_{0}}{j_{1}(\theta)} \exp\left(-\frac{\nu_{+}}{\theta}\right) \right]^{\frac{1}{2}} + 2j_{1}(\theta) \exp\left(\frac{\nu_{+}}{\theta}\right) \right\}$$

so that two unknowns, ν_+ and θ can be found.

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa

,

Kinetic equilibrium 3

$$\exp\left(\frac{\nu_{-}}{\theta}\right) = \exp\left(\frac{\nu_{+}}{\theta}\right) + \frac{n_{p}V_{0}}{j_{1}(\theta)},$$
$$\exp\left(\frac{\nu_{\gamma}}{\theta}\right) = \exp\left(\frac{\nu_{+}}{\theta}\right) \left[1 + \frac{n_{p}V_{0}}{j_{1}(\theta)}\exp\left(-\frac{\nu_{+}}{\theta}\right)\right]^{\frac{1}{2}},$$
$$\exp\left(\frac{\nu_{p} - M/m}{\theta}\right) = n_{p}V_{0}\sqrt{\frac{2}{\pi}}\left(\frac{m}{M}\right)^{3/2}\theta^{-3/2}.$$

In thermal equilibrium $\nu_{\gamma} = 0$ and $\nu_{+} = -\nu_{-}$. For $n_{p} > 0$ one always has $\nu_{-} > 0$ and $\nu_{+} < 0$ in thermal equilibrium.

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concentrations

Initial conditions:
$$ho=10^{24}$$
 erg/cm 3 , $ho_\pm=10^{-5}
ho$, $B=10^{-3}$

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 18 / 22

Energy densities

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loa Pescara, 9 July 2008 19 / 22

Temperatures

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loz Pescara, 9 July 2008 20 / 22

E

Chemical potentials

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton lo: Pescara, 9 July 2008 21 / 22

1 Two types of equilibrium: kinetic and thermal.

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin Thermalization of pair plasma with proton loc Pescara, 9 July 2008 22 / 22

- Two types of equilibrium: kinetic and thermal.
- **2** Kinetic equilibrium is obtained from the first principles.

- Two types of equilibrium: kinetic and thermal.
- ② Kinetic equilibrium is obtained from the first principles.
- ③ Protons thermalize with other particles by proton-electron scatterings; proton-proton scattering is inefficient.

- Two types of equilibrium: kinetic and thermal.
- ② Kinetic equilibrium is obtained from the first principles.
- ③ Protons thermalize with other particles by proton-electron scatterings; proton-proton scattering is inefficient.
- ④ The timescale of thermalization is always shorter than the dynamical one.