The Extended Nuclear Matter Model with Smooth Transition Surface

Jorge A. Rueda H.^{1,2}, B. Patricelli^{1,2}, M. Rotondo^{1,2}, R. Ruffini^{1,2,3} and S-S. Xue²

 ¹ University of Rome "La Sapienza"-Piazzale Aldo Moro 5 -00185, Rome-Italy
² ICRAnet and ICRA, Piazzale della Repubblica 10, 65122, Pescara-Italy
³ ICRAnet, University of Nice "Sophia Antipolis", Grand Château, BP 2135, 06103 Nice-France

July 11, 2008

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 2 The Relativistic Thomas–Fermi Equation
- The Woods-Saxon–like Proton Distribution Function

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

4 Results of the Numerical Integration

Introduction

The existence of electric fields close to their critical value

$$E_c = \frac{m_e^2 c^3}{e\hbar}$$

has been proved for massive cores of 10^7 up to 10^{57} [1, 2].

Figure: Polytropic Index for the Harrison-Hakano-Wheeler EOS

(日) (圖) (E) (E) (E)

Poisson Equation + Equilibrium Condition

$$\nabla^2 V(r) = -4\pi e[n_p(r) - n_e(r)] \tag{1}$$

$$E_e^F = m_e c^2 \sqrt{1 + x_e^2} - m_e c^2 - eV = 0$$
 (2)

Modified Relativistic TF Equation

 \downarrow

$$\xi_e''(x) + \left(\frac{2}{x + R_c/a}\right)\xi_e'(x) - \frac{[\xi_e^2(x) - 1]^{3/2}}{\mu} + f_p(x) = 0 \quad (3)$$

$$\xi_e(0) = \sqrt{1 + [\mu\,\delta f_p(0)]^{2/3}}, \qquad \xi_e'(0) < 0, \qquad \xi_e(\infty) = 0.$$

 $x = \frac{r - R_c}{a}, \quad \frac{1}{a} = \sqrt{4\pi\alpha\lambda_e n_p^c}, \quad \mu = 3\pi^2\lambda_e^3 n_p^c, \quad \xi_e = \sqrt{1 + x_e^2}, \quad \delta = \frac{n_e(0)}{n_p(0)}, \quad fp(x) = \frac{n_p(x)}{n_p^c}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Proton profile for $\gamma = 1.5$, $\beta \approx 0.0585749$, $f_p(0) = 0.5$

Neutron Number Density

After integrating the TF equation, we can to calculate the neutron number density using the equilibrium condition of the direct and inverse β decay

 β -equilibrium $n \rightarrow e^{-} + p + \bar{\nu}$ $e^{-} + p \rightarrow n + \nu$ $m_n c^2 \xi_n - m_n c^2 = m_p c^2 \xi_p - m_p c^2 + eV$

The potential V is calculated using the equilibrium condition (2).

$$n_n(x) = \frac{[\xi_n^2(x) - 1]^{3/2}}{3\pi^2 \lambda_n^3}$$

Results of the Numerical Integration

We have integrated numerically the eq.(3) for several sets of parameters and initial conditions.

Physical Parameters $N_e = N_p$ A E_{peak}/E_c $R_c(km)$ 10^{54} 1.61×10^{56} 955.56 2×10^{54} 2.35×10^{56} 1255.56

Number Densities

$$n_e(x) = \frac{[\xi_e^2(x) - 1]^{3/2}}{3\pi^2 \lambda_e^3}, \quad n_p(x) = n_p^c f_p(x)$$

Figure: Electron and Proton Number Density

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Figure: Charge separation function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Electric field in units of the critical field E_c

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Effect of the Sharpness

Example					
ĺ	δ	$\xi'_e(0)$	$n_{p}^{c}(cm^{-3})$		
	0.496633412	-3.616	$2.76 imes 10^{36}$		

Physical Parameters

$N_e = N_p$	A	E_{peak}/E_c	$R_c(km)$
$2 imes 10^{54}$	$2.34 imes 10^{56}$	420	5.56

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Effect of the Sharpness

Concluding Remarks

- We confirm the existence of overcritical electric fields about the transition surface between the core and the crust of neutron stars when it is smooth.
- The intensity of the electric field depends on the proton density mainly by two factors:
 - (i) the value of n_p about the surface
 - (ii) how it changes about the surface (sharpness)
- The extension of the electric field (its width) depends mainly on the extension of the proton density about the surface.
- A sharper density about the core surface intensifies the electric field.

Work in Progress ...

- We are studying the way to calculate the proton distribution function in a self-consistent way:
 - (i) appropriate treating of phase transition core-crust
 - (ii) inclusion of gravitational potential
 - (iii) solve the problem within the framework of General Relativity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A. B. Migdal, D. N. Voskresenskii and V. S. Popov, JETP letters, 24 186 (1976)
- R. Ruffini, M. Rotondo and S. S. Xue, Int. Journal of Mod. Phys D, 16 1 (2007)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ