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ABSTRACT

Recent developments from the activity of the CGM

group are discussed.

Cosmological implications of fundamental approaches

to quantization of gravity are presented in order to

fix the main issues as well as perspectives for future

investigations.

Particular attention will be devoted to the classical

and quantum features of the generic inhomogeneous

Universe, to the role of reference frame in quantum

gravity, and eventually to phenomenological features

related with the Kaluza-Klein framework.

SUMMARY OF THE TALK

- Cosmology

- Quantum Gravity

- Kaluza-Klein



Montani - III Stueckelberg Workshop
Prespectives in Cosmology, Gravitation and Multidimensions

INHOMOGENEOUS MIXMASTER MODEL

The dynamics of the generic cosmological solution

of the Einstein equations can be investigated and re-

duced, towards the initial singularity, to the sum of

∞, decoupled, point Universes, each of them evolv-

ing according to the following variational principle in

a reduced phase space ΓQ

S =
∫

ΓQ
dτ (pu∂τu + pv∂τv+

− v
√

p2
u + p2

v )
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Each of these point Universe (where “point” means

of the horizon size) exhibits strong chaotic features

that can be characterized by the existence of a sta-

tionary measure:

dµ =
1
π

dudv
v2

dφ

2π

[R.Benini, GM, Phys. Rev. D, 70, (2004) 103527.
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QUANTUM EFFECTS

The quantum regime can be well characterized as

Ψ = ∑
n

an
Ks−1/2(2π|n|v)

√
v

×

× sin(2πnu)

(E/h̄)2 = t2 + 1/4 . -1 -0.75 -0.5 -0.25  0
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An interesting feature is that E0 > 0a.

Actually we are working on the implementation of a

Weyl description of the quantum dynamics, aiming

to get a quantum phase-space distribution ρb

H2 ∗ ρ = E2ρ

and for evidence of chaos in the wave function of

the Universe analyzing the WKB wave function.

For the Bianchi II model readsb

ΨWKB = ρ exp(iS/h̄); S ∼ k1Ω + k2β+ + k3β−+

+
√

A− 3e4(α+β++
√

3β−) + ln[
√

A−
√

A− 3e4(α+β++
√

3β−)]

[aR.Benini,GM Class. Quant. Grav. 4, (2007) 387.]
[bR.Benini,GM Weyl Quantum dynamics of the Mixmaster model in prep.]
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ENERGY MOMENTUM TENSOR OF A

VISCOUS SOURCE

Immediate generalization of FRW-scheme ⇒ dissipative pro-

cesses within the fluid dynamics (expected at T ∼ O(1016GeV))

Additional term in the E-M Tensor

Tν
µ = ε (w + 1) uµuν− w ε δν

µ + (ζ − 2
3 η) uρ

; ρ (δν
µ− uµuν)+

+η (u ; ν
µ + uν

; µ− uνuρuµ; ρ− uµuρuν
; ρ)

w = p/ε, where p is the thermostatic pressure and ε the energy density

ζ bulk viscosity : phenomenological issue inherent

to the difficulty for a thermodynamical system to

follow the equilibrium configuration.

η shear viscosity : energy dissipation due to displace-

ment of the matter layers with respect to each other.

ζ = ζ0 ρ s η = η0 ρ q

• ε→ ∞: 0 ≤ s < 1/2 q ≥ 1/2 + s
• ε→ 0: s ≥ 1 q ≥ 1

[V.A. Belinskii, I.M. Khalatnikov, Sov. Phys. JETP, 42 (1976) - 45 (1977)]
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COSMOLOGICAL IMPLEMENTATION OF

THE VISCOUS EFFECT

Isotropic (quasi-isotropic) model: only bulk viscosity

→ Viscosity induces a negative pressure term: dump-

ing of the cosmological perturbations

• FRLW-Model: asymptotic behavior of the density

contrast for η � 1 (η: conformal time)

δρ

ρ
∼
[
C1η3−2/ω + C2η2 + C3η3−1/ω + C4η5−1/ω

]
where ω = 1− χ ζ0, χ =

√
54 πG

Perturbations are damped and for ζ0 > 1/3χ the isotropic and

homogeneous Universe acquires instability in the direction of

the singularity

• Collapsing-Shell: weak field limit (Newtonian anal-

ysis), adiabatic behavior of the gas clouds 4
3 < γ ≤ 5

3

δ ADB ∼ t
γ
2−

5
6+ λ

6A λ = C ζ0

Threshold value: λ > λ∗ no fragmentation process δ ADB → 0

[N. Carlevaro, GM, Mod. Phys. Lett. A, 20 (2007) 1729.]
[N. Carlevaro, GM, Class. Quant. Grav., 22 (2005) 4715.]

[N. Carlevaro, GM, accepted by Int. J. Mod. Phys. D]
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DEFORMED MINISUPERSPACE DYNAMICS

Generalized Uncertainty Principle (GUP)

∆q∆p ≥ 1
2

(
1 + β(∆p)2 + β〈p〉2

)
String theory leads to this relation

The GUP can be obtained deforming the Heisenberg

algebra

[q, p] = i(1 + βp2)

A non-vanishing minimal uncertainty in position arises

∆qmin =
√

β > 0

Eigenstate of an observable A implies ∆A = 0. There-

fore, in the GUP framework, no physical states

which are position eigenstates exist at all

Information on position can be recovered from the

quasiposition wave function ψ(ζ) ≡ 〈ψml
ζ |ψ〉

ψ(ζ) ∼
∫ dp

(1 + βp2)3/2e
i ζ√

β
tan−1(

√
βp)

ψ(p)

This is a generalized Fourier transformation
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FRW MODEL IN THE GUP FRAMEWORK

Hg + Hφ ≡ −9κp2
xx +

3
8π

p2
φ

x
= 0 x ≡ a3,

a is the scale factor and φ the emergent time: the

wave function Ψ(x, φ) evolves as φ changes

Quantization: (φ, pφ) are canonically quantized while

(x, px) are GUP quantized via [x, px] = i(1 + βp2
x)

Decomposition of the solution into positive and neg-

ative frequency: i∂φΨ = −
√

Θ̂Ψ (positive frequency)

Computation of the quasiposition wave function of

the model and analysis of the wave packets dynamics

The GUP wave packets do not fall in the singularity,

but they approach the Planckian region in a station-

ary way

The FRW Universe in the GUP scheme appears

to be singularity-free in a probabilistic sense.

[M.V.Battisti, GM, Phys. Lett. B, 656, (2007) 96.]
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TAUB MODEL IN THE GUP FRAMEWORK

The Taub cosmological model is particular case of

Bianchi IX (γ− = 0)

ds2 = N2dt2− e2α
(

e2γ
)

ij
ωi ⊗ω j

α describes the isotropic expansion of the Universe

while γij = γij(t) determines the anisotropies via γ±

The classical dynamics of this model resemble the

one of a mass-less particle which bounces against a

given wall

Quantization: the time variable (namely the volume

of the Universe) canonically treated, the anisotropic

one quantized in the deformed approach

By the analysis of the GUP wave packets dynam-

ics the probability to find the Universe at the

classical singularity is negligible

[M.V.Battisti, GM, Phys. Rev. D, 77, (2008) 023518.]



Montani - III Stueckelberg Workshop
Prespectives in Cosmology, Gravitation and Multidimensions

POLYMER TAUB UNIVERSE

[ q̂, p̂] = ih̄ 1̂⇒ U(α) ·V(β) = e(−iα β)/h̄V(β) ·U(α)

-exponentiated versions of q̂ and p̂

U(α) = ei(α q̂)/h̄ V(β) = ei(β p̂)/h̄

-their expectation values on the vacuum state

Û(α) · φ(q) := (eiα q/h̄ φ)(q), V̂(β) · φ(q) := e
β

d2 (q−β/2) φ(q− β)

Polymer substitution p→ 1
µ0

sin(µ0p).
The application of this paradigm to the Taub Uni-

verse HT
ADM = px ≡ p does not remove the cosmo-

logical singularity
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[M.V Battisti, O.M. Lecian, GM, submitted to Phys.Rev.D.]
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TIME GAUGE IN QUANTUM GRAVITY

Given a 3+1 slicing of the space-time manifold, 4-

bein vectors can be written as

e0
µ = (N, χaEa

i ) ea
µ = (Ea

i Ni, Ea
i ).

χa variables give velocity components of {ea
µ} with

respect to spatial hypersurfaces.

Loop Quantum Gravity is based on the time-gauge

condition χa = 0, by which a SU(2) Gauss constraint

is inferred. After the quantization, a discrete spec-

trum for geometrical operators is predicted.

A quantization procedure without the time gauge

would shed light on the behavior of this discrete spa-

tial structure under boosts.
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SECOND-ORDER FORMULATION

In a second-order formulation without the time-gauge

the boost constraints are obtained

πa− πbχbχa + δabπi
bχcEc

i = 0

As soon as χa = χ̄a are fixed, conjugate momenta

πa can be evaluated and substituted into other con-

straints.

In this scheme, χ̄a label different sectors where a

canonical quantization can be performed.

The invariance under boosts is preserved on a quan-

tum level, since a unitary operator Uε can be find

mapping physical states between χ̄a = 0 and χ̄a = εa

Uε = I − i
4
∫

εaεb(Eb
i πi

a + πi
aEb

i )d3x + O(ε4).

[F.Cianfrani, GM, Class. Quant. Grav., 24, (2007) 4161.]
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FIRST-ORDER FORMULATION

In a first order formulation, some second-class con-

straints arise, which can be solved by fixing the local

Lorentz frame

An extension of Barbero-Immirzi connections has

been provided

Ãa
i = Tab(ω0bi − πDχb)− 1

2γ(1+χ2)εa
cd

πω
c f

iT
−1d

f

such that Gauss constraints can be defined

G′a = ∂iπ̃
i
a− γ(1 + χ2)εabcTcdÃb

i π̃i
d

{G′a, G′b} = γ(1 + χ2)εabcTcdG′d.

This formulation enables the use of LQG quantiza-

tion techniques in a generic Lorentz frame. This

way the behavior under boosts of discrete spectra

of geometrical operator can be inferred.
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FLUID ENTROPY AS AN EVOLUTION

OPERATOR IN CANONICAL QG

Matter/Reference frame duality allows the definition

of a time operator via the Schutz’ perfect fluid√
−g
[
ρ0 (µ− TS) + R(4)

]
(µ is the normalization of the velocity potentials,

T the temperature and S the entropy field) The

Kuchǎr-Brown mechanism allows to solve the super-

Hamilotonian constraint

π − h[HG, HG
i , S] = 0

(π is the momentum conjugate to one of the scalar

fields involved, and G denotes matter free GR quan-

tities)

In the comoving frame one identifies SpS = θHG/T
so that

{H̄phys, O f (τ)} =
δ

δlnS
O f (τ)

So in the Comoving Frame one can identify the Log

of S with the time variable for observables.

[GM, S. Zonetti, Definition of a time variable with Entropy of a perfect

fluid in Canonical Quantum Gravity, (2008) submitted to Phys.Rev.D]
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GRAVITY AS A GAUGE THEORY

4-Dimensional manifold → tetrads formalism

Orthonormal basis for the local Minkowskian tangent space-time

Recover Lorentz symmetry: tetrad changes defined as local L.tr

gµν = ηab e a
µ e b

ν e a
µ eµ

b = δa
b e a

µ eν
a = δν

µ

Lorentz (spin) connections ω ab
µ : covariant-der. Da

Γ(L)
µ = 1

2 ω cd
µ Σcd ω cd

µ = ecν∇µe d
ν

(Σcd: generators of the LG - ∇µ: coordinate covariant derivative)

Description of gravity as a gauge model:

ω ab
µ = e c

µ γab
c S = −1

4
∫

e d4x e µ
a e ν

b R ab
µν

R ab
µν = ∂νω ab

µ − ∂µω ab
ν + F ab

cd e f ω cd
µ ω

e f
ν

ω ab
µ → ω ab

µ − ∂µεab + 1
4F

ab
cd e f εcdω

e f
ν

Ambiguity: spin connections can be uniquely determined as

functions of tetrad fields in terms of the Ricci rotation coeffi-

cients - The model is not based on two independent d.o.f.



Montani - III Stueckelberg Workshop
Prespectives in Cosmology, Gravitation and Multidimensions

PROPOSAL FOR A GAUGE THEORY OF

THE LORENTZ GROUP

Starting point → isometric diffeomorphisms

induce local Lorentz rotations

x′µ = xµ + ξµ(x) ∇µξν +∇νξµ = 0

Iso. Diff. → e′aµ (x′) = ea
µ(x) + ea

ρ(x)∂ξρ/∂x′µ

Inf. Lore. → e′aµ (x′) = ea
µ(x′) + eb

µ(x′)εa
b

εab = D[aξb]− Rabcξc

If the two transformations overlap: inconsistence

→ Spin Connections: vectors or gauge fields?

→ Fermions: scalars or spinor Lorentz rotated?

New gauge field A ab
µ to restore the Lorentz invariance

Flat-space: ∂µ → ∂µ− i
4 A ab

µ Σab
→ fermion dynamics: Lint = 1

4 ψ̄ εc
abd γ5 γd Aab

c ψ

• Curved space-time: connections→ ω̃a
b = ωa

b + Aa
b;

A ab
µ identified with torsion fields:

right hand side of the 2nd Cartan equation dea + ωa
b ∧ eb = Ta

[N. Carlevaro, O.M. Lecian, G.M., A. Fond. L. deBroglie, 32 (2007) 281.]
[N. Carlevaro, O.M. Lecian, G.M., to be submitted to Eur. Phys. Lett.]

[O.M. Lecian, G.M., accepted by Journ. Math. Phys.]
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f (R) MODIFIED GRAVITY

SG = − c3

16πG

∫
d4x
√
−g f (R)

f ′Rµν−
1
2

f gµν−∇µ∇ν f ′+ � f ′ = 0

3� f ′+ f ′R− 2 f = 0, f ′(R) ≡ d f (R)/dR

S = − c3

16πG

∫
d4x
√
−g
[

f ′(A)(R− A) + f (A)
]

, R ≡ A

gµν → eϕgµν, ϕ = − ln f ′(A)

S = − c3

16πG

∫
d4x
√
−g
[
R− 3

2
gρσ∂ρϕ∂σϕ−V(ϕ)

]
,

V(ϕ) =
A

f ′(A)
− f (A)

f ′(A)2 ,
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EXPONENTIAL f (R)

f (R) = λeµR: only one free parameter available for the model,

the ’cosmological constant’ Λ = f (0) 6= 0. λ = 2Λ, µ = 1
2Λ.

Full non-Einsteinian regime: Λ > 0

Einsteinian regime at lower orders: the Taylor expansion holds

for Λ < 0 (accelerating deSitter phase)

For a Planckian value of Λ, a suitable cancellation mechanism

has to be hypothesized.

NON-ANALYTICAL f (R)

f (R) = R + γRβ, 2 < β < 3
ds2 = (1 + Φ)dt2− (1−Ψ)dr2− r2dθ2− r2 sin2 θdφ2

R = Ar
2

β−2 , A =
[
−6γβ(3β−4)(β−1)

(β−2)2

] 1
2−β

Φ ≡ ΦN + ΦC = σ + δ
r + A(β−2)2

6(3β−4)(β−1)r
2

β−1
β−2

Ψ ≡ ΨN + ΨC = δ
r + A(β−2)

3(3β−4)r
2

β−1
β−2 ,

very stringent constraints on γ imposed by planetary orbital

periods but for β ∼ 2

validity range rs � r � r∗

[O.M.Lecian, GM, Int. J. Mod. Phys. D, 17, (2008) 1111.]
[O.M.Lecian, G.Montani, submitted to Phys. Rev. D]
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5D KALUZA KLEIN MODEL

JAB =

 gµν− φ2(ek)2AµAν −φ2(ek)Aµ

−φ2(ek)Aµ −φ2

 (ek)2 =4G ; c=1

S5 = − 1
16πG

∫
d4x
√
−g (φR− 2�φ +

1
4
(ek)2φ3FµνFµν)

If we put φ = 1 before the variational procedure we

recover Einstein-Maxwell dynamics.

The problem of matter:

S5 = −m̂
∫

ds5 → PAPA = m̂2

The 4D reduced particle is characterized by :

q = ekP5 m2 =

(
P2

5
φ2 + m̂2

)
This result is not consistent with Lorenzian dynam-

ics: it provides a bounded q/m and gives a huge mas-

sive modes spectrum, beyond Planck scale, when we

consider the compactification of the extra dimen-

sion.

[V.Lacquaniti,GM Int.Journ.Mod.Phys.D 4, (2007) 387.]
[V.Lacquaniti,GM Dynamics of Matter in a 5D KK Model submitt. CQG ]
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REVISED APPROACH TO MATTER

DATAB = 0 ∂5TAB = 0

After KK reduction we get a conserved current:

5) → ∇µ

(
φTµ

5

)
= 0 → jµ = ekφTµ

5

µ) → ∇ρ(φTµρ) = −gµρ
(

∂ρφ

φ2

)
T55 + Fµ

ρjρ

For a point-like particle, after a Papapetrou expan-

sion,we have:

m
Duµ

Ds
= A(uρuµ− gµρ)

∂ρφ

φ
+ qFµρuρ

m=
1
u0

∫
d3x
√

g φT00 q= ek
∫

d3x
√

g φT0
5 A=u0

∫
d3x
√

g
T55
φ

In this formulation m and q are not correlated via P5;

we have no bound on q/m; furthermore, analyzing

the effective Lagrangian related to such a motion

we can recognize that the huge massive modes are

suppressed ( no Kaluza-Klein tower ).

[V.Lacquaniti,GM Dynamics of Matter in a Compactified 5D KK Model
submitted Class. Quantum Grav.]
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KALUZA KLEIN THEORY WITH MATTER

Given the consistency of the approach to matter we

can consider the full dynamics for matter and fields:

From GAB = 8πGTAB we get:

Gµν =
1
φ
∇µ∂νφ− 1

φ
gµν�φ + 8πGφ2Tµν

em + 8πG
Tµν

matt
φ

∇ν

(
φ3Fνµ

)
= 4π jµ → jµ = ekφTµ

5
1
2

R +
3
8

φ2(ek)2FµνFµν = 8πG
T55
φ2

The problem concerning φ = 1 is now removed. Now

we are studying omogeneus cosmological solutions

and spherical solutions. Interesting perspectives are

related to the behaviour of mass

dm
ds

= −A
φ

dφ

ds

Noticeably, if we assume A = αm we recover FFU

(Free Falling Universality) and we have

m = m0

(
φ

φ0

)−α

[V.Lacquaniti,GM Geometry and Matter in 5D KK framework
to be submitted to Class. Quantum Grav.]
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KALUZA-KLEIN FRAMEWORK

The Kaluza-Klein (KK) approach is based on the

identification of gauge symmetries with isometries

of an homogeneous extra-dimensional space.

The full metric contains gauge bosons AM̄
µ as off-

diagonal components

jAB =


gµν− φ2γmnξm

M̄ξn
N̄ AM̄

µ AN̄
ν −φ2γmnξm

M̄AM̄
µ

−φ2γmnξn
N̄ AN̄

ν −φ2γmn

 .

Under these hypotheses, the Yang-Mills Lagrangian

density comes out by the dimensional reduction of

the Einstein-Hilbert action in 4-dimensions

S = − c3

16π(n)G

∫
V4⊗BK

√
−j(n)Rd4xdKy =

= − c3

16πG

∫
V4

√
−gφ

[
R + (k)R′+

1
4

φ2FM̄
µνFM̄µν

]
d4x
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PHENOMENOLOGICAL POINT OF VIEW

The KK procedure is not able to reproduce non-

Abelian gauge bosons transformations

ξ ′ m
M̄ (y′)A′M̄µ = ξ ′ m

M̄ (y′)(AM̄
µ − ∂µωM̄).

This issue can be solved by an averaging procedure

on the extra-dimensional space1.

Furthermore, this average allows us to find out a

form for spinors, such that KK mass terms can be

suppressed by an order parameter β

χrs = 1√
V

e
− i

2σ(p)rsλ
(p)
(q)Θ(q)(ym)

; Θ(p) = 1
βc(p)e−βη

Within this scheme the electro-weak model can be

geometrized, finding an upper bound for β (β > 1028).

Massive neutrinos and a justification for the fine-

tuning of the Higgs parameters can be given too2.

[1F.Cianfrani, GM Mod. Phys. Lett. A, 21, 3, (2006) 265.]
[2F.Cianfrani, GM, IJMPD 17, 5, (2008) 785.]


