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Motivations: The Immirzi parameter is a free constant that appears in
the spectra of area and volume of LQG. Many attempts have been
made to understand the origin of this ambiguitya, here we face the
problem from a topological point of view, focusing the attention on the
role played by the Fermions fields in this context.

a
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Motivations: The Immirzi parameter is a free constant that appears in
the spectra of area and volume of LQG. Many attempts have been
made to understand the origin of this ambiguitya, here we face the
problem from a topological point of view, focusing the attention on the
role played by the Fermions fields in this context.

Goal: The Immirzi parameter is a quantization ambiguity connected
with the topological structure of the quantum configuration space in
analogy with the θ-angle of QCD.

On the way: I will be demonstrating that the presence of Fermions
allows us to introduce a topological density called Nieh-Yan term,
which links the E-C theory to the A-B one. It plays a role analogous
to that played by the Chern-Simons functionals in Yang-Mills gauge
theories and its presence is connected with the particular structure
the LGT group has in temporal gauge fixed gravity.

a
Rovelli & Thiemann, (1998), R. Gambini et al., (1999), Perez & Rovelli (2005), Freidel et al. (2005),
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General remarks: The torsion 2-form and its irreducible parts are
introduced, then the Nieh-Yan topological term is described,
digressing on its main features.
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Outline

General remarks: The torsion 2-form and its irreducible parts are
introduced, then the Nieh-Yan topological term is described,
digressing on its main features.

Einstein-Cartan theory: The minimal coupling between gravity and
spinor matter fields is described, then the canonical theory is
constructed and the temporal gauge fixing discussed.

Large gauge transformations: The system is canonically quantized
and the structure of the effective quantum configuration space is
studied using a particular Chern-Simons functional containing
torsion. The role of the de Sitter group is clarified specifying its role
as generator of a particular class of large gauge transformations.
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Outline

Non-minimal action and the classical role of the Immirzi parameter:
some motivations to introduce a non-minimal action are provided, the
role of the Nieh-Yan class clarified and the Immirzi parameter is
compared with the θ-angle of QCD.

II SW 17
th – p. 4



Outline

Non-minimal action and the classical role of the Immirzi parameter:
some motivations to introduce a non-minimal action are provided, the
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compared with the θ-angle of QCD.

Ashtekar-Barbero constraints: Rescaling the wave functional of the
E-C theory by the Nieh-Yan functional, a modification in the quantum
operators is generated, we will be demonstrating that this
modification naturally leads to the Ashtekar-Barbero constraints with
matter.
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Outline

Non-minimal action and the classical role of the Immirzi parameter:
some motivations to introduce a non-minimal action are provided, the
role of the Nieh-Yan class clarified and the Immirzi parameter is
compared with the θ-angle of QCD.

Ashtekar-Barbero constraints: Rescaling the wave functional of the
E-C theory by the Nieh-Yan functional, a modification in the quantum
operators is generated, we will be demonstrating that this
modification naturally leads to the Ashtekar-Barbero constraints with
matter.

Concluding remarks: The obtained results are briefly summarized
and a comment on the appearance of the Immirzi parameter in the
spectra of non-perturbative operators of a fully Lorentz covariant
theory will conclude my presentation.
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General Remarks (Torsion)
The II Cartan structure equation is

dea + ωa
b ∧ eb = T a ,

the solution is ωa
b =

◦
ω a

b (e) +Ka
b, where T a = Ka

b ∧ eb.
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General Remarks (Torsion)
The II Cartan structure equation is

dea + ωa
b ∧ eb = T a ,

the solution is ωa
b =

◦
ω a

b (e) +Ka
b, where T a = Ka

b ∧ eb.

Torsion can be decomposed according to the proper Lorentz group by
introducing the following irreducible components:

1. the trace vector T = eb
y Tb;

2. the pseudo-trace axial vector S = 3! ⋆
(
eb ∧ Tb

)

3. and the 2-form qa, satisfying: eay qa = 0 and eb ∧ qb = 0.

We have:

T a =
1

3
ea ∧ T − 1

3
⋆ (ea ∧ S) + qa

Finally we note that Rab =
◦
R ab + d(

◦

ω)Kab +Ka
c ∧Kcb.
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General Remarks (Nieh-Yan 4-form)
The II Cartan structure equation implies the cyclic Bianchi identity

dea + ωa
b ∧ eb = d(ω)ea = T a =⇒ Ra

b ∧ eb = d(ω)T a . (1)

Considering the Nieh-Yan 4-form

N(e, ω) = T a ∧ Ta −Rab ∧ ea ∧ eb , (2)

we have:

N(e, ω) = d(ω)ea ∧ Ta − ea ∧ d(ω)T a = d(ω) (ea ∧ T a) = d (ea ∧ T a) . (3)

The Nieh-Yan 4-form is the only exact 4-form containing torsion.

II SW 17
th – p. 6



General Remarks (Nieh-Yan 4-form)
The II Cartan structure equation implies the cyclic Bianchi identity

dea + ωa
b ∧ eb = d(ω)ea = T a =⇒ Ra

b ∧ eb = d(ω)T a . (5)

Considering the Nieh-Yan 4-form

N(e, ω) = T a ∧ Ta −Rab ∧ ea ∧ eb , (6)

we have:

N(e, ω) = d(ω)ea ∧ Ta − ea ∧ d(ω)T a = d(ω) (ea ∧ T a) = d (ea ∧ T a) . (7)

The Nieh-Yan 4-form is the only exact 4-form containing torsion.

Over a compact manifold, the integral of the Nieh-Yan form is:

∫ (
T a ∧ Ta − ea ∧ eb ∧Rab

)
=
L2

2
[P4 (SO(5)) − P4 (SO(4))] , (8)

where P4 =
∫

M4 R
ab ∧Rab denotes the 4-dim Pontryagin classes.
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Einstein-Cartan theory
We can describe a system of spin-1/2 fields coupled to gravity via the
Einstein-Cartan action:

SEC

(
e, ω, ψ, ψ

)
=

1

2

∫
ea ∧ eb ∧ ⋆Rab +

i

2

∫
⋆ ea ∧

(
ψγaDψ −Dψγaψ

)
,

where the covariant derivatives are defined as:

Dψ = dψ − i

4
ωabΣabψ and Dψ = dψ +

i

4
ψΣabω

ab.
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Einstein-Cartan theory
We can describe a system of spin-1/2 fields coupled to gravity via the
Einstein-Cartan action:

SEC

(
e, ω, ψ, ψ

)
=

1

2

∫
ea ∧ eb ∧ ⋆Rab +

i

2

∫
⋆ ea ∧

(
ψγaDψ −Dψγaψ

)
,

where the covariant derivatives are defined as:

Dψ = dψ − i

4
ωabΣabψ and Dψ = dψ +

i

4
ψΣabω

ab.

Spinor fields generate torsion, the variation with respect to ωab gives

d(ω)ea = T a = ⋆
(
ea ∧ ebJ

b
(A)

)
where Jd

(A) = ψγdγ5ψ .

The unique solution is:

ωab
(
e, ψ, ψ

)
=

◦
ω ab (e) +

1

4
ǫab

cde
cJd

(A).
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E-C theory (effective action)
It is worth noting that the II Cartan structure equation does not contain
dynamical information, it is an algebraic relation that makes it possible to
uniquely express the spin connection as function of the gravitational and
spinor fields.
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E-C theory (effective action)
It is worth noting that the II Cartan structure equation does not contain
dynamical information, it is an algebraic relation that makes it possible to
uniquely express the spin connection as function of the gravitational and
spinor fields.

We can pull back the E-C action on the solution of the structure equation:

SJ−J

(
e, ψ, ψ

)
=

1

4

∫
ǫabcd e

a ∧ eb ∧
◦
R cd

+
i

2

∫
⋆ ea ∧

(
ψγa

◦
Dψ −

◦
Dψγaψ

)

+
3

16

∫
dV ηabJ

a
(A)J

b
(A) ,

well known as Einstein-Cartan effective action
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digression...

Let us consider the Holst action:

S(e, ω) =
1

2

∫
ea ∧ eb ∧

(
⋆Rab − 1

β
Rab

)
, (9)

In pure gravity, the dynamics of the gravitational field is classically not
affected by the Holst modification.
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digression...

Let us consider the Holst action:

S(e, ω) =
1

2

∫
ea ∧ eb ∧

(
⋆Rab − 1

β
Rab

)
, (11)

In pure gravity, the dynamics of the gravitational field is classically not
affected by the Holst modification.

In the presence of minimally coupled fermions the situation changes:

The Bianchi cyclic identity becomes:

Ra
b ∧ eb = d(ω)T a , (12)

as a consequence the Holst modification no longer vanishes and the
classical theory results to be modified.
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Some comments are in order:
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Some comments are in order:

The minimal coupling of fermions to the gravitational field described
by the Holst action generates a modification with respect to the
Einstein-Cartan action;

the Immirzi parameter acquires a classical meaning;

the minimal approach lacks a clear geometrical explanation;

it does not work for β = ± i.

The above points would encourage to search for a different and
geometrically well motivated action describing the interaction between
spin-1/2 fields and gravity in analogy with the Holst approach.
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Non-minimal action (construction)

It is worth noting that the Holst action can be rewritten as:

S(e, ω) =
1

16

∫
tr

(
1 − i

β
γ5

)
e ∧ e ∧ ⋆R (13)

where e ∧ e = ea ∧ ebΣab and R = RabΣab.

The modification is due to the second term of S5
(β) = 1 − i

β
γ5.

II SW 17
th – p. 11



Non-minimal action (construction)

It is worth noting that the Holst action can be rewritten as:

S(e, ω) =
1

16

∫
tr

(
1 − i

β
γ5

)
e ∧ e ∧ ⋆R (15)

where e ∧ e = ea ∧ ebΣab and R = RabΣab.

The modification is due to the second term of S5
(β) = 1 − i

β
γ5.

So we can imagine to introduce the same modification in the Dirac action,
which becomes

S(ψ,ψ) =
i

2

∫
⋆ea ∧

(
ψγaS5

(β)Dψ + h.c.
)
, (16)

more explicitly the result is the following gravity-matter action:
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Non-minimal action

S
(
e, ω, ψ, ψ

)
=

1

4

∫ (
ǫabcd e

a ∧ eb ∧Rcd − 2

β
ea ∧ eb ∧Rab

)

+
i

2

∫
⋆ ea ∧

[
ψγa

(
1 − i

β
γ5

)
Dψ −Dψ

(
1 − i

β
γ5

)
γaψ

]
,

II SW 17
th – p. 12



Non-minimal action

S
(
e, ω, ψ, ψ

)
=

1

4

∫ (
ǫabcd e

a ∧ eb ∧Rcd − 2

β
ea ∧ eb ∧Rab

)

+
i

2

∫
⋆ ea ∧

[
ψγa

(
1 − i

β
γ5

)
Dψ −Dψ

(
1 − i

β
γ5

)
γaψ

]
,

THIS ACTION IS DYNAMICALLY EQUIVALENT TO THAT OF THE
EINSTEIN-CARTAN THEORY
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Non-minimal action (features)

The non-minimal actiona is characterized by the following features:

a
SM, Phys. Rev. D73, 084016, (2006).
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The non-minimal actiona is characterized by the following features:

it reduces to the EC action once the structure equation is solved;

the effective theory is well defined for every value of the Immirzi
parameter;

the introduced modifications can be reduced to the topological
Nieh-Yan invariant;

for β = ± i it reduces to the Ashtekar-Romano-Tate action.

a
SM, Phys. Rev. D73, 084016, (2006).
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Non-minimal action (features)

The non-minimal actiona is characterized by the following features:

it reduces to the EC action once the structure equation is solved;

the effective theory is well defined for every value of the Immirzi
parameter;

the introduced modifications can be reduced to the topological
Nieh-Yan invariant;

for β = ± i it reduces to the Ashtekar-Romano-Tate action.

Let me show you that the resulting effective theory is equivalent to E-C.

a
SM, Phys. Rev. D73, 084016, (2006).
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Non-minimal action (effective theory)

We can calculate the irreducible components of torsion in the general
case by variating the action with respect to the 1-form ωab, we have:

T =
3

4α

(
αβ − β2

β2 + 1

)
ebJ

b
(A), S = −3β

α

αβ + 1

β2 + 1
eaJ

a
(A), qc = 0.

They depend both on α and β. But. . .

⇓
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Non-minimal action (effective theory)

We can calculate the irreducible components of torsion in the general
case by variating the action with respect to the 1-form ωab, we have:

T =
3

4α

(
αβ − β2

β2 + 1

)
ebJ

b
(A), S = −3β

α

αβ + 1

β2 + 1
eaJ

a
(A), qc = 0.

They depend both on α and β. But. . .

⇓
For α = β they reduce to

T = 0, S = −3 eaJ
a
(A), qc = 0,

which correspond exactly to those coming out from the Einstein-Cartan
theory. So, from now on we consider only the case α = β.
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Non-minimal action (geometrical aspects)
Consider: SN−Y = − 1

2β

∫ [
Rab ∧ ea ∧ eb − ⋆ ea ∧

(
ψγaγ5Dψ −Dψγ5γaψ

)]
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Non-minimal action (geometrical aspects)
Consider: SN−Y = − 1

2β

∫ [
Rab ∧ ea ∧ eb − ⋆ ea ∧

(
ψγaγ5Dψ −Dψγ5γaψ

)]

Using
[
γa,Σbc

]
= 4 iηa[bγc], we can write:

⋆ ea ∧
(
ψγ5γ

aDψ −Dψγaγ5ψ
)

= d
(
⋆ eaJ

a
(A)

)
− ⋆ ea ∧Ka

bJ
b
(A) .

Considering that T a = ⋆
(
ea ∧ ebJ

b
(A)

)
=⇒ T a ∧ ea = − 1

2 ⋆ eaJ
a
(A) and

T a ∧ Ta = Ka
b ∧ eb ∧ ⋆

(
ea ∧ ecJ

c
(A)

)
=

1

2
ǫacdfK

a
b ∧ eb ∧ ed ∧ efJc

(A) (18)

= −1

2
ǫacdf ǫ

gbdfKa
b ∧ ⋆egJ

c
(A) = 2δ[ga δ

b]
c K

a
b ∧ ⋆egJ

c
(A) = − ⋆ ea ∧Ka

bJ
b
(A).
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Non-minimal action (geometrical aspects)
Consider: SN−Y = − 1

2β

∫ [
Rab ∧ ea ∧ eb − ⋆ ea ∧

(
ψγaγ5Dψ −Dψγ5γaψ

)]

Using
[
γa,Σbc

]
= 4 iηa[bγc], we can write:

⋆ ea ∧
(
ψγ5γ

aDψ −Dψγaγ5ψ
)

= d
(
⋆ eaJ

a
(A)

)
− ⋆ ea ∧Ka

bJ
b
(A) .

Considering that T a = ⋆
(
ea ∧ ebJ

b
(A)

)
=⇒ T a ∧ ea = − 1

2 ⋆ eaJ
a
(A) and

T a ∧ Ta = Ka
b ∧ eb ∧ ⋆

(
ea ∧ ecJ

c
(A)

)
=

1

2
ǫacdfK

a
b ∧ eb ∧ ed ∧ efJc

(A) (19)

= −1

2
ǫacdf ǫ

gbdfKa
b ∧ ⋆egJ

c
(A) = 2δ[ga δ

b]
c K

a
b ∧ ⋆egJ

c
(A) = − ⋆ ea ∧Ka

bJ
b
(A).

Calculating, we finally obtain

SN−Y = − 1

2β

∫ [
Rab ∧ ea ∧ eb − T a ∧ Ta + 2d (ea ∧ T a)

]
= − 1

2β

∫
d (ea ∧ T a)
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Consequently: pulling back the action onto the solution of the structure
equation, it reduces to the effective Einstein-Cartan action plus a total
divergence.
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Consequently: pulling back the action onto the solution of the structure
equation, it reduces to the effective Einstein-Cartan action plus a total
divergence.

REMARKS:

the proposed action describes the same classical dynamics of the
Einstein-Cartan action;

the Immirzi parameter disappears from the effective classical action;

it generalizes the Holst approach to the presence of fermions;

the non-minimal action suggests a possible physical interpretation of
the Immirzi parameter in analogy with the parameter θ of Yang-Mills
gauge theories.
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E-C theory (canonical formulation)

Consider again the Einstein-Cartan action

SEC

(
e, ω, ψ, ψ

)
=

1

2

∫

M

ea ∧ eb ∧ ⋆Rab +
i

2

∫

M

⋆ ea ∧
(
ψγaDψ −Dψγaψ

)
,
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E-C theory (canonical formulation)

Consider again the Einstein-Cartan action

SEC

(
e, ω, ψ, ψ

)
=

1

2

∫

M

ea ∧ eb ∧ ⋆Rab +
i

2

∫

M

⋆ ea ∧
(
ψγaDψ −Dψγaψ

)
,

Assuming that space-time is a globally hyperbolic manifold

⇓
Geroch theorem (1970)

On the space-time (M, gµν) a global “time” function can be chosen such
that each surface of constant t is a Cauchy surface. Thus M can be
foliated by Cauchy surfaces and the topology of M is R × Σ, where Σ

denotes any Cauchy surfaces.
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3+1 splitting procedure...

Let us introduce the so called deformation vector tµ, defined as

tµ∇µt = 1

geometrically represents the “flow of time” throughout space-time,
namely the directional derivative it generates corresponds to an increment
in label time t.
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3+1 splitting procedure...

Let us introduce the so called deformation vector tµ, defined as

tµ∇µt = 1

geometrically represents the “flow of time” throughout space-time,
namely the directional derivative it generates corresponds to an increment
in label time t. The deformation vector tµ generates a one parameter
group of diffeomorphisms

φt : R × σ →M as (t;x) → yµ(t;x) := yµ
t (x), where Σ3

t

def
= yµ

t (x) ,

A one-parameter family of embeddings is equivalent to a one-parameter
group of diffeomorphisms

They are generally called “embedding diffeomorphisms”. The embedding
diffeomorphisms is left completely arbitrary and is used for recasting the
action into a 3+1-form.
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Using the embedding diffeomorphisms we can rewrite the Einstein-Cartan
action in a 3+1 form:

SEC

φt−→ S3+1 =

∫

R×σ

dtd
3
xL3+1
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Using the embedding diffeomorphisms we can rewrite the Einstein-Cartan
action in a 3+1 form:

SEC

φt−→ S3+1 =

∫

R×σ

dtd
3
xL3+1

We can now calculate the

CONJUGATED MOMENTA

πα
ab = −e et

[ae
α
b] , ΠA =

i

2
e et

aψB (γa)
B
A , ΩB = − i

2
e et

a (γa)
B
A ψ

A ,

respectively associated to the dynamical fields ωab
α , ψA and ψB .
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After having recognized the six primary constraints

Cαβ :=
1

2
ǫabcdπ

(α
abπ

β)
cd ≈ 0 ,

we can perform the Legendre transformation and complete the canonical
analysis...
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After having recognized the six primary constraints

Cαβ :=
1

2
ǫabcdπ

(α
abπ

β)
cd ≈ 0 ,

we can perform the Legendre transformation and complete the canonical
analysis...

Specifically, after having equipped the phase space with the following

SYMPLECTIC STRUCTURE
{
ωab

α (t, x), πβ
cd(t, x

′)
}

= δβ
αδ

ab
cdδ

(3)(x− x′) ,
{
ψA(t, x),ΠB(t, x′)

}
+

= δA
Bδ

(3)(x− x′) ,
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...we can extract the following full set of constraints

II SW 17
th – p. 21



...we can extract the following full set of constraints

FIRST CLASS CONSTRAINTS

Gab :=Dαπ
α
ab −

i

4
ΠΣabψ ≈ 0 ,

Cα :=πβ
abR

ab
αβ − ΠDαψ ≈ 0 ,

C :=
1

2
πα

acπ
βc

bR
ab

αβ + iπα
abΠΣabDαψ ≈ 0 ,
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...we can extract the following full set of constraints

FIRST CLASS CONSTRAINTS

Gab :=Dαπ
α
ab −

i

4
ΠΣabψ ≈ 0 ,

Cα :=πβ
abR

ab
αβ − ΠDαψ ≈ 0 ,

C :=
1

2
πα

acπ
βc

bR
ab

αβ + iπα
abΠΣabDαψ ≈ 0 ,

SECOND CLASS CONSTRAINTS

Cαβ :=
1

2
ǫabcdπ

(α
abπ

β)
cd ≈ 0 ,

Dαβ :=
1

2
ǫabcdπγ

agπ
(α|g|

bDγπ
β)
cd − 1

4
ǫab

cdπ
(α
fgπ

β)
abΠΣfgΣcdψ ≈ 0 .
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Temporal gauge fixing
In order to solve the second class constraints, we should replace the
Poisson brackets with the Dirac ones, but this complicated procedure
does not concern our scopes here and, as usual, we proceed to simplify
the problem by partially fixing the gauge.

We fix πα
ij = 0, which corresponds to the so called temporal gauge; with

this choice the gauge symmetry reduces from the full local Lorentz
rotations to the subgroup of spatial rotations.
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Temporal gauge fixing
In order to solve the second class constraints, we should replace the
Poisson brackets with the Dirac ones, but this complicated procedure
does not concern our scopes here and, as usual, we proceed to simplify
the problem by partially fixing the gauge.

We fix πα
ij = 0, which corresponds to the so called temporal gauge; with

this choice the gauge symmetry reduces from the full local Lorentz
rotations to the subgroup of spatial rotations.

As a consequence of the partial gauge fixing, we get the

REDUCED SYMPLECTIC FORM
{
Ki

α(t, x), Eβ
k (t, x′)

}
= δβ

αδ
i
kδ

(3)(x− x′)
{
ψA(t, x),ΠB(t, x′)

}
+

= δA
Bδ

(3)(x− x′) .
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The main consequence of the partial gauge fixing is the reduction of the
full set of constraints to the following seven first class constraints:

Ri := ǫ k
ij K

j
αE

α
k − i

4
ΠΣiψ +

i

4
ψΣiΩ ≈ 0 ,

Cα := 2Eβ
i D[αK

i
β] − ΠDαψ −DαψΩ ≈ 0 ,

C :=
1

2
Eα

i E
β
j

(
ǫijkR

k
αβ + 2Ki

[αK
k
β]

)
+ iEα

i

(
ΠΣ0iDαψ −DαψΣ0iΩ

)

− i

4
ǫiklE

α
i K

k
α

(
ΠΣlψ − ψΣlΩ

)
− 1

4
Eα

kK
k
α

(
Πψ + ψΩ

)
≈ 0 ,

notations: Eα
i = πα

0i , Kj
β = ω0j

β , Σi = 1
2ǫ

jk
i Σjk , Ri = 1

2ǫ
i
jk

(3)Rjk .

Moreover, by solving the second class constraints, we get the

compatibility condition

DαE
β
i = 0
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Quantization procedure
The temporal gauge fixing allows us to reduce the full set of first and
second class constraints to a set of first class constraints only, so that we
can quantize the system by adopting the Dirac procedure, i.e. the
constraints are directly implemented in the quantum theory by requiring
that the state functional be annihilated by their operator representation.

II SW 17
th – p. 24



Quantization procedure
The temporal gauge fixing allows us to reduce the full set of first and
second class constraints to a set of first class constraints only, so that we
can quantize the system by adopting the Dirac procedure, i.e. the
constraints are directly implemented in the quantum theory by requiring
that the state functional be annihilated by their operator representation.

The wave function depends on half of the elementary variables. Once
chosen a suitable quantum configuration space, namely the polarization,
we have to equip it with the structure of a Hilbert space H(L2, dµ) called
auxiliary Hilbert space.
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Quantization procedure
The temporal gauge fixing allows us to reduce the full set of first and
second class constraints to a set of first class constraints only, so that we
can quantize the system by adopting the Dirac procedure, i.e. the
constraints are directly implemented in the quantum theory by requiring
that the state functional be annihilated by their operator representation.

The wave function depends on half of the elementary variables. Once
chosen a suitable quantum configuration space, namely the polarization,
we have to equip it with the structure of a Hilbert space H(L2, dµ) called
auxiliary Hilbert space.

We have to require that the operator representation of the canonical
variables, linearly acting on the auxiliary Hilbert space, generates an
irreducible representation of the canonical commutation relation, i.e.

[
Q̂(h), P̂ (f)

]
= i~ ̂{Q(h), P (f)}.
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Quantization procedure (polarization)

Let me assume as coordinates on the quantum configuration space the
following fields: Eα

i and ψA, so that the wave function is

Φ = Φ (E,ψ) .
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Quantization procedure (polarization)

Let me assume as coordinates on the quantum configuration space the
following fields: Eα

i and ψA, so that the wave function is

Φ = Φ (E,ψ) .

The quantum gravitational equations are formally expressed as

R̂iΦ (E,ψ) = 0 , ĈαΦ (E,ψ) = 0 , Ĉ Φ (E,ψ) = 0 ,
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Quantization procedure (polarization)

Let me assume as coordinates on the quantum configuration space the
following fields: Eα

i and ψA, so that the wave function is

Φ = Φ (E,ψ) .

The quantum gravitational equations are formally expressed as

R̂iΦ (E,ψ) = 0 , ĈαΦ (E,ψ) = 0 , Ĉ Φ (E,ψ) = 0 ,

⇓
Invariance under local internal symmetry
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Quantization procedure (polarization)

Let me assume as coordinates on the quantum configuration space the
following fields: Eα

i and ψA, so that the wave function is

Φ = Φ (E,ψ) .

The quantum gravitational equations are formally expressed as

R̂iΦ (E,ψ) = 0 , ĈαΦ (E,ψ) = 0 , Ĉ Φ (E,ψ) = 0 ,

⇓
Invariance under local internal symmetry

Whereas an internal symmetry is present, the state functional is invariant
under small gauge transformations, i.e. the automorphisms of the
quantum configuration space in the connected component of the identity.
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Large gauge transformations

So the request that the state functional be annihilated by the quantum
rotations operator R̂i corresponds to the invariance of the state functional
itself under small internal gauge transformations, but no hint is provided
by the canonical theory about its behavior under the Large gauge
transformations.
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Large gauge transformations

So the request that the state functional be annihilated by the quantum
rotations operator R̂i corresponds to the invariance of the state functional
itself under small internal gauge transformations, but no hint is provided
by the canonical theory about its behavior under the Large gauge
transformations.

Definition: we call large gauge transformation all the gauge
transformations characterized by a non-vanishing winding number

w(g) = n 6= 0
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Large gauge transformations

So the request that the state functional be annihilated by the quantum
rotations operator R̂i corresponds to the invariance of the state functional
itself under small internal gauge transformations, but no hint is provided
by the canonical theory about its behavior under the Large gauge
transformations.

Definition: we call large gauge transformation all the gauge
transformations characterized by a non-vanishing winding number

w(g) = n 6= 0

In order to define the winding number and to review some useful
concepts, let me refer to the specific case of a gauge theory with an
internal SU(N) symmetry...
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LGT (winding number)
Consider the 3-sphere S3 obtained by the one point compactification of
R3, every element g(x) ∈ SU(N) of the internal gauge group represents a
continuous map

g(x) : S3 → SU(N),

characterized by a number of disconnected components, specifically we
have:

Π3 (SU(N)) ≃ Z.
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LGT (winding number)
Consider the 3-sphere S3 obtained by the one point compactification of
R3, every element g(x) ∈ SU(N) of the internal gauge group represents a
continuous map

g(x) : S3 → SU(N),

characterized by a number of disconnected components, specifically we
have:

Π3 (SU(N)) ≃ Z.

We can compute explicitly the winding number by calculating the
Cartan-Maurer integral

w(g) =
1

24π

∫ (
g−1dg

)
∧
(
g−1dg

)
∧
(
g−1dg

)
,

which tells us how many times g(x) winds around the non-contractible
3-sphere S3 in the SU(N) manifold as x ranges over the 3-sphere S3.
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LGT (digression)
Consider an SU(N) Yang-Mills gauge theory in its canonical form. The
dynamics is described by the Hamiltonian,

H =

∫
d3x tr

[
N

(
1

2
√
h
παπα +

√
h

4
FαβF

αβ

)
−NβπαFαβ

]
,

πα =
√

h
N

(∂tAα − ∂αAt) +
√
hNβ

N
Fαβ is the conjugate momentum to A.

The accessible part of the phase space is determined by the Gauss law

Gi := Dαπ
α
i = ∂απ

α
i + f k

ij Aj
απ

α
k ≈ 0 .
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LGT (digression)
Consider an SU(N) Yang-Mills gauge theory in its canonical form. The
dynamics is described by the Hamiltonian,

H =

∫
d3x tr

[
N

(
1

2
√
h
παπα +

√
h

4
FαβF

αβ

)
−NβπαFαβ

]
,

πα =
√

h
N

(∂tAα − ∂αAt) +
√
hNβ

N
Fαβ is the conjugate momentum to A.

The accessible part of the phase space is determined by the Gauss law

Gi := Dαπ
α
i = ∂απ

α
i + f k

ij Aj
απ

α
k ≈ 0 .

Let me suppose to quantize the theory adopting the Dirac procedure and
let φ = φ(A) be the state functional describing the quantum system, we
require that:

Ĝiφ(A) = 0
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LGT (behavior of the state functional)
As previously remarked, the previous equation obliges the state functional
to be invariant under small gauge transformations. In this respect, we
assume that Ĝn represents the large gauge transformations operator.

Since the Hamiltonian is (fully) gauge invariant, one can construct a base
of eigenstates diagonalizing simultaneously the Hamiltonian and the
operator Ĝn.
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LGT (behavior of the state functional)
As previously remarked, the previous equation obliges the state functional
to be invariant under small gauge transformations. In this respect, we
assume that Ĝn represents the large gauge transformations operator.

Since the Hamiltonian is (fully) gauge invariant, one can construct a base
of eigenstates diagonalizing simultaneously the Hamiltonian and the
operator Ĝn.
In other words, the following eigenvalues equation

Ĝnφ(A) = φ(A(gn)) = exp {iθn}φ(A) ,

where n is the numerical value of the winding number, represents a
super-selection rule for the eigenstates of the theory, each one marked by
a different winding number. This is equivalent to have n different vacuum
states |n〉

Ĝ1 |n〉 = |n+ 1〉 . (24)

Moreover a one parameter ambiguity is introduced in the quantum theory.
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Chern-Simons functionals

It is well known that it is possible to obtain a fully gauge invariant state
functional by rescaling it by the exponential of the Chern-Simons
functionals.
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Chern-Simons functionals

It is well known that it is possible to obtain a fully gauge invariant state
functional by rescaling it by the exponential of the Chern-Simons
functionals.

Consider the following functional of the SU(N) group valued connection A

Y(A) =
1

16π

∫
tr

(
F ∧A+

2

3
A ∧A ∧A

)
,

it is possible to demonstrate that the following relation holds:

Y (Ag) = Y (A) + w(g) .
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Invariant state functional
So, let us rescale the wave functional by the exponential of the
Chern-Simons functional and verify that it is an eigenfunction of the large
gauge transformations operator with eigenvalues independent of the
winding number:

φ′(A) = exp {−iθY(A)}φ(A) ,

thus, we have

Gnφ
′(A) = Gn [exp {−iθY(A)}φ(A)]

= exp {−iθ [Y(A) + w(g)]} · exp {iθn}φ(A) = φ′(A) .

In other words, it is possible to choose a fully gauge invariant vacuum,
namely |θ〉 =

∑
n exp(−inθ) |n〉.
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Invariant state functional
So, let us rescale the wave functional by the exponential of the
Chern-Simons functional and verify that it is an eigenfunction of the large
gauge transformations operator with eigenvalues independent of the
winding number:

φ′(A) = exp {−iθY(A)}φ(A) ,

thus, we have

Gnφ
′(A) = Gn [exp {−iθY(A)}φ(A)]

= exp {−iθ [Y(A) + w(g)]} · exp {iθn}φ(A) = φ′(A) .

In other words, it is possible to choose a fully gauge invariant vacuum,
namely |θ〉 =

∑
n exp(−inθ) |n〉.

Consequently we have:

π′
αφ

′(A) = e−iθY(A)π′
αe

iθY(A)φ′(A) = −i
[

δ

δAα
− iθ

8π2
ǫ βγ
α Fβγ

]
φ′(A) .
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Modified Hamiltonian
The immediate consequence of the modification in the expression of the
momentum operator is that the Hamiltonian changes too, specifically we
have:

H ′ =

∫
d3x tr

[
N

(
1

2
√
h

(
πα − θ

8π2
ǫ βγ
α Fβγ

)2

+

√
h

4
FαβF

αβ

)
−NβπαFαβ

]
,

the presence of a pseudo-vectorial object implies that the Hamiltonian H ′

fails to be P and CP invariant.

II SW 17
th – p. 32



Modified Hamiltonian
The immediate consequence of the modification in the expression of the
momentum operator is that the Hamiltonian changes too, specifically we
have:

H ′ =

∫
d3x tr

[
N

(
1

2
√
h

(
πα − θ

8π2
ǫ βγ
α Fβγ

)2

+

√
h

4
FαβF

αβ

)
−NβπαFαβ

]
,

the presence of a pseudo-vectorial object implies that the Hamiltonian H ′

fails to be P and CP invariant.
We could have obtained the same result if we initially started from the
following action:

S(A, ∂A) =
1

16π

∫
⋆F ∧ F +

θ

16π

∫
F ∧ F ,

namely adding a θ dependent topological term to the usual Yang-Mills
action.
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...back to gravity...

The same concepts we introduced in Yang-Mills theories can be used in
gravity. We recall that the rotational constraint,

R̂iΦ(E,ψ) = 0

plays the same role of the Gauss constraints of YM gauge theories.
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The same concepts we introduced in Yang-Mills theories can be used in
gravity. We recall that the rotational constraint,

R̂iΦ(E,ψ) = 0

plays the same role of the Gauss constraints of YM gauge theories.

The appearance of the Immirzi parameter in the quantum
theory of gravity can be traced back to the large structure of

the gauge group of the theory.
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...back to gravity...

The same concepts we introduced in Yang-Mills theories can be used in
gravity. We recall that the rotational constraint,

R̂iΦ(E,ψ) = 0

plays the same role of the Gauss constraints of YM gauge theories.

The appearance of the Immirzi parameter in the quantum
theory of gravity can be traced back to the large structure of

the gauge group of the theory.

Let me indicate with Ĝ the large gauge operator... but, above all,

Question: are the large spatial rotations the only large gauge
transformations involved in this problem?
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...back to gravity...
My answer is: NO!
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...back to gravity...
My answer is: NO!

Remark: The temporal gauge reduces the gauge group from SO(3, 1) to
SO(3), fixing the small component of SO(3, 1)/SO(3).
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SO(3), fixing the small component of SO(3, 1)/SO(3).

This gauge fixing is connected with the appearance of the
Immirzi parameter in the quantum theory
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...back to gravity...
My answer is: NO!

Remark: The temporal gauge reduces the gauge group from SO(3, 1) to
SO(3), fixing the small component of SO(3, 1)/SO(3).

This gauge fixing is connected with the appearance of the
Immirzi parameter in the quantum theory

The Immirzi parameter, in fact, as previously demonstrated, appears in
front of the Nieh-Yan term. This behavior is analogous to that of θ
previously described.
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...back to gravity...
My answer is: NO!

Remark: The temporal gauge reduces the gauge group from SO(3, 1) to
SO(3), fixing the small component of SO(3, 1)/SO(3).

This gauge fixing is connected with the appearance of the
Immirzi parameter in the quantum theory

The Immirzi parameter, in fact, as previously demonstrated, appears in
front of the Nieh-Yan term. This behavior is analogous to that of θ
previously described.

It is possible to show that it exists a class of large gauge transformations
which motivates the presence of the Nieh-Yan term in the classical theory.
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back to gravity (consequences)
1. we can interpret the presence of the Immirzi parameter in the

quantum theory;

2. we can construct a link between the E-C and A-B quantum theories,
in view, also, of a possible classical limit of quantum gravity.
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1. we can interpret the presence of the Immirzi parameter in the

quantum theory;

2. we can construct a link between the E-C and A-B quantum theories,
in view, also, of a possible classical limit of quantum gravity.

The Nieh-Yan term is generated by a particular class of LGT. We have to
consider the large component of the gauge fixed sector of the full Lorentz
group. But, how can we do this in the present framework?
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back to gravity (consequences)
1. we can interpret the presence of the Immirzi parameter in the

quantum theory;

2. we can construct a link between the E-C and A-B quantum theories,
in view, also, of a possible classical limit of quantum gravity.

The Nieh-Yan term is generated by a particular class of LGT. We have to
consider the large component of the gauge fixed sector of the full Lorentz
group. But, how can we do this in the present framework?

By introducing the

MacDowell-Mansouri connection

Γab =




ωij ℓ−1

Pl e
i

−ℓ−1
Pl e

j 0



 .
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...back to gravity...
The MacDowell-Mansouri connection allows to extend the gauge group
from SO(3) to SO(3, 1)... in order to understand the meaning of extending
the gauge group, it is useful to refer to a lower dimensional case...
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...back to gravity...
The MacDowell-Mansouri connection allows to extend the gauge group
from SO(3) to SO(3, 1)... in order to understand the meaning of extending
the gauge group, it is useful to refer to a lower dimensional case...

Consider a 2-dim manifold, on the tangent bundle acts the SO(2) group in
the natural way. Now imagine to construct a new bundle via the one point
compactification of R2, namely the “bundle of tangent spheres”: the group
SO(3) has a natural action on it. So, extending the gauge group means
considering the parallel transport of spheres instead of the parallel
transport of planes!
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...back to gravity...
The MacDowell-Mansouri connection allows to extend the gauge group
from SO(3) to SO(3, 1)... in order to understand the meaning of extending
the gauge group, it is useful to refer to a lower dimensional case...

Consider a 2-dim manifold, on the tangent bundle acts the SO(2) group in
the natural way. Now imagine to construct a new bundle via the one point
compactification of R2, namely the “bundle of tangent spheres”: the group
SO(3) has a natural action on it. So, extending the gauge group means
considering the parallel transport of spheres instead of the parallel
transport of planes!

What is the link with the MacDowell-Mansouri connection? The SO(3)

connection constructed above rotates 3-dim spheres, the small
component of the rotation can be factorized in a SO(2) rotation that leaves
the tangent point P fixed and a translation of the tangent point itself. In
other words we have:

so(3) ≃ so(2) ⊕ S1
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Back to gravity (LGT)
Using the MacDowell-Mansouri connection we can construct the
associated Chern-Simons functional

Y(Γ) =
1

4

∫ (
F ab ∧ Γab +

1

3
Γa

b ∧ Γb
c ∧ Γc

a

)
,

and we can note that...

we have that...
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Back to gravity (LGT)
Using the MacDowell-Mansouri connection we can construct the
associated Chern-Simons functional

Y(Γ) =
1

4

∫ (
F ab ∧ Γab +

1

3
Γa

b ∧ Γb
c ∧ Γc

a

)
,

and we can note that...

...factorizing the spatial rotations, namely

Y(Γ) − Y(ω) =
1

4

∫ [
F ab ∧ Γab +

1

3
Γa

b ∧ Γb
c ∧ Γc

a

−
(
Rij ∧ ωij +

1

3
ωi

j ∧ ωj
k ∧ ωk

i

)]

we have that...
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Nieh-Yan functional

The 3-form YNY (e, ω) = Y(Γ) − Y(ω) defined in the previous slide can be
rewritten as

YNY =
1

2

∫
ei ∧ T i ,

which is called Nieh-Yan functional and contains torsion.
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Nieh-Yan functional

The 3-form YNY (e, ω) = Y(Γ) − Y(ω) defined in the previous slide can be
rewritten as

YNY =
1

2

∫
ei ∧ T i ,

which is called Nieh-Yan functional and contains torsion.

In other words, the Nieh-Yan functional turns out to be the difference
between two Chern-Simons functionals.
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Rescaled functional
This suggests that rescaling the wave functional by the exponential of the
Nieh-Yan functional corresponds to take into account the fact that the
gauge fixing acts only on the small component of the boost sector of the
initial gauge group, so that if we want to construct a state functional
invariant under the full boost sector we have to consider

Φ′(E,ψ) = exp

{
− i

β
Y (E)

}
Φ(E,ψ) ,

but this inevitably introduces a 1-parameter ambiguity in the theory.
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Rescaled functional
This suggests that rescaling the wave functional by the exponential of the
Nieh-Yan functional corresponds to take into account the fact that the
gauge fixing acts only on the small component of the boost sector of the
initial gauge group, so that if we want to construct a state functional
invariant under the full boost sector we have to consider

Φ′(E,ψ) = exp

{
− i

β
Y (E)

}
Φ(E,ψ) ,

but this inevitably introduces a 1-parameter ambiguity in the theory.
This rescaling modifies the momentum operators K̂i

α, ΠB

K̂ ′ i
αΦ′(E,ψ) =

(
K̂i

α − 1

βe
ǫijkE

β
j T

k
αβ

)
Φ′(E,ψ) ,

Π̂
′
BΦ′(E,ψ) =

(
Π̂B − i

β
Π̂A

(
γ5
)A

B

)
Φ′(E,ψ) ,

generating the following modifications in the canonical constraints...
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...we have

R′
i =

1

β
DαE

α
i + ǫ k

ij K
j
αE

α
k − i

4
ΠS5

(β)Σiψ ≈ 0 ,

C′
α = 2Eβ

i D[αK
i
β] +

1

2β
ǫijkE

β
i R

k
αβj − ΠS5

(β)Dαψ ≈ 0 ,

C′ =
1

2
Eα

i E
β
k

(
ǫiklR

l
αβ + 2Ki

[αK
k
β]

)
+ iEα

i ΠS5
(β)Σ

0iDαψ

− i

4
ǫiklE

α
i K

k
αΠS5

(β)Σ
lψ − 1

4
Eα

kK
k
αΠS5

(β)ψ ≈ 0 ,

where S5
(β) = 1 − i

β
γ5. It is worth noting that the gravitational

contributions in above expressions are exactly those obtainable starting
from the Holst action, while the matter contribution are those obtainable
by the non-minimal coupling.
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Provided that the new variables Ai
α are defined via the

“symplecto-morphisms”

Ak
α = βKk

α − 1

2
ǫ k
ij ω

ij
α ,

and, consequently, the new symplectic structure

{
Ai

α(t, x), Eβ
k (t, x′)

}
= βδβ

αδ
i
kδ

(3)(x− x′) ,

is assumed...

...we exactly get the Ahtekar-Barbero constraints with fermions.
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So, we have demonstrated that the Ashtekar-Barbero constraints of GR
can be obtained by rescaling the state functional of the canonically
quantized Einstein-Cartan theory by the exponential of the Nieh-Yan
functional.

II SW 17
th – p. 42



So, we have demonstrated that the Ashtekar-Barbero constraints of GR
can be obtained by rescaling the state functional of the canonically
quantized Einstein-Cartan theory by the exponential of the Nieh-Yan
functional.

Specifically, in this approach the Ashtekar-Barbero constraints are directly
obtained by studying the non-trivial behavior of the state functional under
a particular class of large gauge transformations, shedding light on the
presence of the Immirzi 1-parameter ambiguity in the quantum theory,
which, as the θ-angle of QCD, has a topological origin.
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