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Abstract: This talk is devoted to introduce a gauge theory of the Lorentz Group based on the

ambiguity emerging in dealing with isometric diffeomorphism-induced Lorentz transformations. The

behaviors under local transformations of fermion fields and spin connections (assumed to be

coordinate vectors) are analyzed in flat space-time and the role of the torsion field within the

generalization to curved space-time is briefly discussed. The fermion dynamics including the new

gauge field is then analyzed assuming time-gauge and stationary solutions in the non-relativistic limit

are founded.

New Issues in Lorentz Gauge Theories – p.1/24



Outline:

1. Internal space-time symmetries: the standard approach to a Lorentz Gauge Theory

2. Diffeomorphism induced Lorentz transformations and new connections

3. Formulation of the theory on flat space-time

4. Fermion dynamics in the non-relativistic limit: a generalized Pauli Equation

5. Generalization to curved space-time and the role of the torsion field
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Section 1

Internal space-time symmetries: the standard
approach to a Lorentz Gauge Theory

Internal symmetries of the space-time: we focus on the description of GR as a
gauge model (underling the ambiguity that arises from this approach).

Tetrad formalism (e a
µ ) for the local Minkowskian tangent space-time can recover the

Lorentz symmetry

→ tetrad changes are defined as local Lorentz trs between inertial references

gµν = ηab e
a

µ e b
ν e a

µ eµ
b

= δa
b e a

µ eνa = δν
µ

µ = 0, 1, 2, 3 coordinate indices a = 0, 1, 2, 3 Lorentz indices

e a
µ → Λa

b e
b

µ
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Internal space-time symmetries: the standard approach to a Lorentz Gauge Theory

Local Lorentz invariance of the scheme → Covariant derivative

∂a ψ = e µ
a ∂µ ψ (coordinate scalar) → Da ψ = (∂a + Γ(L)

a )ψ (Lorentz vector)

Lorentz connections ω ab
µ :

Γ(L)
a = e µ

a Γ(L)
µ Γ(L)

µ = 1
2 ω

cd
µ Σcd ω

cd
µ = e

cν
∇µe

d
ν = e

a
µ γ

cd
a

Σcd: generators of the Lorentz Group (LG) ∇µ: coordinate covariant derivative

• Connections are called spin connections:

→ they restore the correct Dirac algebra in curved space-time.

→ the correct treatment of spinors leads to the introduction of that connections
which guarantee a suitable gauge model for the Lorentz group even on flat
space-time.

→ spinors are a particular representation of the LG.
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Internal space-time symmetries: the standard approach to a Lorentz Gauge Theory

This picture suggests (in appearance) the description of GR as a gauge model

Lorentz connections are the projected Ricci rotation coefficients ω ab
µ = e c

µ γab
c :

R ab
µν = ∂νω

ab
µ − ∂µω

ab
ν + F ab

cd efω
cd

µ ω ef
ν

F ab
cd ef : LG structure constants

The Hilbert-Einstein action for GR can be written in the form

S(e, ω) = − 1
4

∫
e d4x e µ

a e ν
b R ab

µν

→ Variation wrt connections leads to the II Cartan structure equation

∂µe
a

ν − ∂νe
a

µ − ω ab
µ eνb + ω ab

ν eµb = 0

→ Variation wrt tetrads gives the Einstein equations
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Internal space-time symmetries: the standard approach to a Lorentz Gauge Theory

In the usual approach, ω ab
µ transform like Lorentz gauge vectors under infinitesimal

local Lorentz trs - εab: infinitesimal parameter → Λb
a = δb

a + εba

ω ab
µ → ω ab

µ − ∂µε
ab + 1

4F
ab

cd ef ε
cdω ef

ν

Riemann tensor is preserved by such a change
(in flat space-time, we deal with non-zero gauge connections, but a vanishing curvature)

� Ambiguity: ω ab
µ exhibit the right behavior to play the role of Lorentz gauge fields,

and GR assume the features of a gauge theory.

But:

→ spin connections can be uniquely determined as functions of tetrad fields in
terms of the Ricci rotation coefficients: non fundamental gauge fields

→ Tetrad fields (Principle of General Covariance): two dependent dof
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Section 2

Diffeomorphism induced Lorentz
transformations and new connections

The introduction of fermions into the dynamics requires to treat local Lorentz trs as the
real independent gauge of GR. Because of the spinor behavior, it is crucial to investigate
if diffeomorphisms can be reinterpreted as local Lorentz transformations.

Transformation laws:

→ Gauge potential under Lorentz trs - (Lorentz indices)
ω ab

µ
→ Coordinate vector under diffeomorphism - (Coordinate indices)

→ Representation of the LG - ψ(x) → ψ′(x′) = S ψ(x) (tangent bundle)
ψ

→ Coordinate scalar - (no world indices)

If the two trs overlap: inconsistence - what is the nature of ω ab
µ and ψ ?
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Diffeomorphism induced Lorentz transformations and new co nnections

An isometric diffeomorphism induces orthonormal transformed basis e a
µ :

in this sense an isometry generates a local Lorentz transformation of the basis.

• Infinitesimal isometric diffeomorphism:

xµ → x′µ = xµ + ξµ(x) ∇µξν + ∇νξµ = 0 (isometry condition)

e a
µ (x)

D
→ e a

µ (x) + e a
ρ (x) ∂ξρ / ∂x′µ

• Infinitesimal Lorentz transformation:

Λb
a(x) = δb

a + εba e a
µ (x)

L
→ e a

µ (x) + e b
µ (x)εab

The two trs overlap if: εab = D[aξb] −Rabcξ
c

Isometry condition ∇(µξν) = 0 must hold in order to have εab = −εba.
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Diffeomorphism induced Lorentz transformations and new co nnections

If isometric diffeomorphism are allowed:
Diffeomorphism induced Lorentz transformation: a new gauge field A ab

µ 6= ω ab
µ must be

introduced to restore the Lorentz invariance

→ Flat space-time: in the case e a
µ = δ a

µ spin connections vanish and they remain
identically zero under diffeomorphisms.

Coordinate transformations = Lorentz rotations (gauge transformations):
ω ab

µ are unappropriate to restore local Lorentz invariance.

→ Curved space-time: ω ab
µ are assumed to behave like tensors under

diffeomorphism induced rotations.

obs. If ω ab
µ behave like gauge vectors, the standard approach can be

recovered (ambiguity of tetrads dependence)

→ Arbitrary choice

obs. Spinor ψ can noway be a Lorentz scalar
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Section 3

Formulation of the theory on flat space-time

Construction of a diffeo-induced Lorentz gauge model on a Minkowski space.

Riemann curvature tensor vanishes: spin connections ω ab
µ can be set to zero

(in general, they are allowed to be non-vanishing quantity in view of local Lorentz invariance)

→ The introduction of Lorentz connections A ab
µ as the gauge field of local LG on flat

space-time (as far as the correspondence between an infinitesimal diffeomorphism and
a local Local rotation is recovered)

The metric tensor can be expressed as: gµν = ηabe
a

µ e b
ν

Infinitesimal diffeomorphism Infinitesimal local Lorentz tr

xa D
→ x′a = xa + ξa(xc) xa L

→ x′a = xa + εab (xc) xb

New Issues in Lorentz Gauge Theories – p.10/24



Formulation of the theory on flat space-time

obs. If vector fields are treated no inconsistence arises if the two trs overlap.

If εba ≡ ∂bξa(xc) the two transformation laws are the same

DV ′
a(x′c) = Va(xc) + ∂aξ

b(xc) Vb(x
c) LV ′

a(x′c) = Va(xc) + εba Vb(x
c)

and the LG loses its status of independent gauge group. To restore the proper
number of degrees of freedom of a Lorentz tr, 10, out of that of generic diffeo., the
isometry condition ∂bξa + ∂aξb = 0 has to be imposed.

Spin-1/2 fields are is described by the Lagrangian density on a 4D flat manifold

L = i
2 ψ̄γ

aeµa∂µψ − i
2 e

µ
a∂µψ̄γ

aψ −mψ̄ψ

which is invariant under global Lorentz trs
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Formulation of the theory on flat space-time

Let us introduce a local Lorentz tr : S = S(Λ(x))

ψ(x) → S ψ(x) ψ̄(x) → ψ̄(x)S−1

where S is in every point a non-singular matrix.

Infinitesimal transformations εab (x) � 1 (εab = −εba) → Λa
b = δa

b + εab

S = I − i
4 ε

ab Σab Σab = − 1
2 [γa, γb] [Σcd,Σef ] = iF ab

cdef Σab

� A spinor can not be a Lorentz scalar → for assumption
the connections ω ab

µ do not follows Lorentz gauge transformations.

New connections have to be introduced to restore Lorentz invariance

(Differently from vector fields, spinors have to recognize the isometric components of the
diffeomorphism as a local Lorentz tr, if accelerated coordinates are taken into account)
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Formulation of the theory on flat space-time

Let us assume that γ matrices transform like Lorentz vectors S γa S−1 = (Λ−1)ab γ
b

• In particular, if ω ab
µ = 0 they still vanish under a Lorentz gauge tr

which now can be seen as a diffeomorphism.

This way L invariance is restored by the new covariant derivative

Dµψ = (∂µ − ig Aµ)ψ = (∂µ − ig A ab
µ Σab)ψ

The gauge invariance γaeµaDµψ → SγaeµaDµψ is provided by the gauge field

Aµ = A ab
µ Σab ( 6= ω ab

µ ) which transforms like Aµ → S Aµ S
−1 − 4i S ∂µ S

−1

A ab
µ → A ab

µ − ∂µε
ab + 4F ab

cdef εef A cd
µ (εef (x) � 1)

i.e. as a natural Yang-Mill field associated to the Lorentz gauge Group,
living in the tangent bundle.
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Section 4

Fermion dynamics in the non-relativistic
limit: a generalized Pauli Equation

For the 4-spinor ψ , the implementation of the local Lorentz symmetry (∂µ → Dµ), in a
flat space, leads to the Lagrangian density:

L = L0 + Lint L0 = i
2 ψ̄γ

aeµa∂µψ − i
2 e

µ
a∂µψ̄γ

aψ − mψ̄ψ

Lint = 1
8 e

µ
c ψ{γ

c,Σab}A
ab

µ ψ = −Sµ
ab
A ab

µ

where the curl brackets indicate the anti-commutator

{γc,Σab} = 2 εcabd γ5 γ
d S ab

µ = − 1
4 ε

ab
cde

c
µ j

d
A

• jd
(A) = ψγ5γ

dψ: spinor axial current interacting with the gauge field Aµ
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

Explicit form of the interaction Lagrangian density:

Lint = 1
4 ψ ε

c
abd γ5 γ

dAab
c ψ

a = {0, α}: split of the gauge field → A0α
0 , Aαβ

0 , A0α
γ , Aαβ

γ

• We impose the time-gauge associated to this picture: Aαβ
0 = 0

• A0α
0 is saturated on the completely anti-symmetric symbol ε00αd ≡ 0

Now we get

Lint = 1
4 ψ (εγ0αδ

γ5 γ
δ A0α

γ + εγ
αβ0 γ5 γ

0Aαβ
γ ) ψ
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

The total Lagrangian density rewrites as

L = i
2 ( ψ† γ0γa∂aψ − ∂aψ

†γ0γaψ) −mγ0 ψ†ψ +

+ ψ† C0 γ
0γ5γ

0ψ + ψ†Cα γ
0γ5γ

αψ

with the identifications: C0 = 1
4 ε

γ
αβ0A

αβ
γ Cα = 1

4 ε
γ
0βα

A0β
γ

Finally, from δS = 0 variation wrt ψ† leads to the modified Dirac eq

(i γ0γ0∂0 + Cα γ
0γ5γ

α + i γ0γα∂α + C0 γ
0γ5γ

0)ψ = mγ0 ψ
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

We look now for stationary solution of the Dirac equation: ψ(x, t) → ψ(x) e−iEt

Using the Standard Representation of Dirac matrices:

ψ =


 χ

φ


 ψ† = (χ† , φ† )

γα =


 0 σα

−σα 0


 γ0 =


 1 0

0 −1


 γ5 =


 0 1

1 0




the 2-component spinors χ and φ are found to satisfy the two coupled eqs

(E − σαC
α)χ − (σαpα + C0)φ = mχ

(E − σαC
α)φ − (σαpα + C0)χ = − mφ
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

In order to investigate the non-relativistic limit → E = E +m

The coupled equations rewrite now

(E − σαC
α)χ = (σαpα + C0)φ

(E − σαC
α +m)φ = (σαpα + C0)χ − mφ

• In the non-relativistic limit both |E| and |σαC
α| terms are small in comparison wrt

the mass term m:

φ =
1

2m
(σαpα + C0)χ

φ is smaller than χ by a factor of order p/m (i.e. v/c): small components
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

Using the Pauli matrix relation (σ · A)(σ · B) = A · B + iσ · (A × B) we can combine the two
eqs in the following expression

E χ(x) =
1

2m

[
p2 + C2

0 + 2C0 (σαpα) + σαC
α

]
χ(x)

Strong analogies with the electro-magnetic case: Pauli Equation

E χ(x) =
1

2m

[
(p + A)2 + µB σ · B + Φ

]
χ(x)

where µB = e/2m is the Bohr magneton and A is the vector potential.

→ It is worth noting the presence of a term related to the helicity of the 2-spinor: this
coupling is controlled by the rotation-like component associated to C0.

→ A Zeeman-like coupling associated to the boost-like component Cα is also present.
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Fermion dynamics in the non-relativistic limit: a generali zed Pauli Equation

Let us now neglect the term C2
0 and implement the symmetry

∂µ → ∂µ +A
U(1)
µ +A ab

µ Σab with A = 0

→ we introduce a Coulomb central potential V (r): E → E − V (r)

H0 =
p2

2m
−

Ze2

(4πε̄0)r

H ′ = 1
m

[
2C0 (Sα p

α) + Sα C
α ]

where S is the spin operator: σα = 2Sα.

These Hamiltonian characterize the electron dynamics in a hydrogen-like atom
in presence of a gauge field of the Lorentz Group.
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Section 5

Generalization to curved space-time and
the role of the torsion field
First Order Approach: in presence of torsion T ρ

µν (Riemann-Cartan space U4), the
II Cartan Structure eq writes

∂µe
a

ν − ∂νe
a

µ − ω̃ ab
µ eνb + ω̃ ab

ν eµb = e a
ρ T ρ

µν = T a
µν

• The connections, solutions of the Cartan eq, are

ω̃ ab
µ = ω ab

µ + K ab
µ

here K ab
µ is the contortion field Kµ

νρ = − 1
2 (T µ

νρ − T µ
ρν + T µ

νρ)

and ω ab
µ are the usual Reimannian spin connections.

→ These connections do not describe any physical field:

K ab
µ appear only in a non-dynamical term: in presence of fermionic matter, substituting ω̃ ab

µ in the HE

action, K ab
µ become proportional to the spin density (Einstein-Cartan model).
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Generalization to curved space-time and the role of the tors ion field

Total connections can be rewritten as: C ab
µ = ω̃ ab

µ + A ab
µ

- A ab
µ : Lorentz gauge connections connected with the appearance of torsion

Interaction term between the spin connections ω and the fields A:
(writes in a more compact formalism)

Sint = 2
∫
εabcd e

a ∧ eb ∧ ω
[c
g ∧A

gd]

S
(
e, ω,A, ψ, ψ

)
=

1

4

∫
εabcd e

a ∧ eb ∧Rcd+

−
1

32

∫
tr ? F ∧ F −

1

4

∫
εabcd e

a ∧ eb ∧ ω
[c
f
∧Afd]+

+
1

2

∫
εabcd e

a ∧ eb ∧ ec ∧

[
iψγd

(
d−

i

4
(ω +A)

)
ψ − i

(
d+

i

4
(ω + A)

)
ψγdψ

]
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Generalization to curved space-time and the role of the tors ion field

Variations:
• No fermion matter:

d(ω̃)ea = Aa
b ∧ e

b ω̃ ab
µ = ω ab

µ +A ab
µ

→ A ab
µ can be identified with the contortion field K ab

µ (II Cartan eq)

• With fermion matter: ω̃ ab
µ = ω ab

µ +A ab
µ + 1

4 ε
a
bcde

c
µ j

d
(A)

→ spin density results to be the source term of the Yang-Mills eq for the new
Lorentz connections.
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Conclusions
• A gauge theory of the Lorentz group is developed starting from the ambiguity in

dealing with isometric diffeomorphism-induced Lorentz transformations. The not
clear behaviors under local transformations of fermion field and spin connections
allows to introduce new connections for the model.

• In order to restore the invariance under diffeo-induced local Lorentz trs of a spinor
lagrangian in a flat scape-time, we need to introduce a new gauge field behaving
like a Yang-Mill field. Spin connections are assumed to behave like coordinate
vectors and are not gauge fields.

• The analysis of the spinor interaction lagrangian in presence of the new gauge
field, in the non-relativistic limit, leads to a Pauli-like equation describing the
behavior of the large components of a 4-spinor.

• The generalization in curved space-time allows to identify the Lorentz gauge field
with the tetradic projection of the contortion field arising from the Second Cartan
Structure equation.
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