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Abstract: This talk focus on the analysis of gravitational instability in presence of dissipative effects.

In particular, the standard Jeans Mechanism and the generalization in treating the Universe expansion

are both analyzed when bulk viscosity affects the first order Newtonian dynamics. As results, the

perturbations evolution is founded to be dumped by dissipative processes and the top-down

mechanism of structure formation is suppressed. In such a scheme the Jeans mass remain

unchanged also in presence of viscosity.
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Outline:

1. Motion equations of a viscous fluid

2. Analysis of the Jeans Mechanism

3. Expanding Universe Generalization
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Section 1

Motion Equation of Viscous Fluids
Adiabatic ideal fluids are governed, in Newtonian regime , by the Eulerian set of eqs:

• Continuity Equation: ρ̇ + ∇ · (ρv) = 0 (energy conservation)

• Euler Equation: v̇ + (v · ∇)v = − 1
ρ∇p −∇φ (momentum conservation)

• Poisson Equation: ∇2φ = 4πGρ (gravitational field)

• Equation of State (EoS): p = p (ρ, S) (pressure and energy density)

where ρ is the energy density, v in the local fluid velocity, p is the pressure, φ is the
gravitational potential and S is the entropy of the adiabatic system (Ṡ = 0)

• The sound speed is defined as: v2
s = δp

δρ
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Motion equation of a viscous fluid

Let us introduce the effects of the energy dissipation during the fluid motion :

thermodynamical non-reversibility and internal friction (we neglect thermal conductivity).

Additional terms in the motion eqs:

→ continuity eq remain unchanged (energy conservation)

→ Euler eq (without gravitational field) writes (α = 1, 2, 3):

∂

∂t
(ρvα) = −∂Παβ

∂xβ

Παβ : momentum flux energy tensor (ideal fluid Παβ = pδαβ + ρvαvβ)

→ Viscosity: irreversible transfer of momentum

Παβ = pδαβ + ρvαvβ − σ′
αβ = −σαβ + ρvαvβ σαβ = −pδαβ + σ′

αβ

σαβ is the stress tensor and σ′
αβ is called the viscous stress tensor.
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Motion equation of a viscous fluid

The general form of σ′
αβ is [L.D. Landau and E.M. Lifshitz, Fluid Mechanics]

σ′
αβ = η

(

∂vα

∂xβ
+

∂vβ

∂xα
− 2

3
δαβ

∂vγ

∂xγ

)

+ ζ δαβ
∂vγ

∂xγ

where the coefficients η e ζ are not dependent of velocity (fluid isotropy needs only
scalar quantities)

→ The term proportional to η coefficient vanish for α and β contraction

→ η > 0: shear viscosity ζ > 0: bulk viscosity

Using the continuity eq, ideal Euler eq rewrites:

ρ

(

∂vα

∂t
+ vβ

∂vα

∂xβ

)

= − ∂p

∂xα

The motion eq of a viscous fluids can now be obtained by adding the expression
∂σ′

αβ/∂xβ to the right hand side of the eq above
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Motion equation of a viscous fluid

Thus we obtain

ρ

(

∂vα

∂t
+ vβ

∂vα

∂xβ

)

= − ∂p

∂xα
+

∂

∂xβ

[

η

(

∂vα

∂xβ
+

∂vβ

∂xα
− 2

3
δαβ

∂vγ

∂xγ

)]

+
∂

∂xα

(

ζ
∂vγ

∂xγ

)

• Homogeneous model: no internal friction between different fluid layers
→ no shear viscosity

• Bulk Viscosity ζ can be expressed in terms of thermodynamical parameters of the
fluid. In the homogeneous models, this quantity depends only on time, and
therefore we may consider it as a function of the Universe energy density ρ:

ζ = ζo ρ
s s = const

ζo parameter defines the intensity of viscous effects
[ V.A. Belinskii and I.M. Khalatnikov, Sov. Phys. JETP, 42 (1976) - 45 (1977) ]
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Motion equation of a viscous fluid

With these considerations, the Euler eq assumes the following form

∂v
∂t

+ (v · ∇)v +
∇p

ρ
− ζ

ρ
∇(∇ · v) = −∇φ

which is the well-known Navier-Stokes Equation in presence of an external gravitational
potential φ.
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Section 2

Analysis of the Jeans Mechanism
Universe fragmentation on small scales: gravitational ins tability

Density perturbation → gravitational contraction of volume → instability.
• Pressure forces: contrast the gravitational contraction

→ maintain uniform the energy density

What are the conditions for which perturbations become unstable?

Jeans Model: small fluctuation on a static homogeneous and isotropic fluid.
Newtonian approach (no Universe expansion)

→ Density perturbations: exponential collapse or pure oscillation regime

“Jeans swindle”: a uniform and static solution of the system is supposed

v = 0 ρ = cost p = cost φ = cost
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Analysis of the Jeans Mechanism

• We impose that bulk viscosity does not affect the zeroth order dynamics

ρ, p, φ = cost v = 0

Homogeneous matter: viscous fluid motion equations

∂ρ

∂t
+ ∇ · (ρv) = 0

∂v
∂t

+ (v · ∇)v +
∇p

ρ
+ ∇φ − ζ

ρ
∇(∇ · v) = 0

∇2φ = 4πGρ

→ This system is the starting point to analyze the evolution of the density
perturbations and the gravitational instability
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Analysis of the Jeans Mechanism

Perturbation theory adding small fluctuations

→ ρ + δρ p + δp φ + δφ v + δv

• Bulk viscosity perturbations ζ = ζo ρ s:

ζ → ζ + δζ : ζ = ζ(ρ) = const. δζ = δρ (∂ζ/∂ρ) + ... = ζo s ρ s−1 δρ + ...

Motion eqs for first-order perturbations:

∂δρ

∂t
+ ρ∇ · δv = 0

∂δv
∂t

+
v2
s

ρ
∇δρ + ∇δφ − ζ

ρ
∇(∇ · δv) = 0

∇2δφ = 4πGδρ

where the adiabatic sound speed is defined as v2
s = δp

δρ
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Analysis of the Jeans Mechanism

With some little algebra we obtain an unique eq for density perturbations

∂2

∂t2
δρ − v2

s∇2 δρ − ζ

ρ

∂

∂t
∇2 δρ = 4πGρ δρ

• Plane waves solutions: linearity of eq and decomposition in Fourier expansion

δρ (r, t) = Aeiωt−ik·r

Substituting this expression in the eq above we obtain the dispersion relation for the
angular frequency ω and the wave number k =| k |

ω2 − i
ζ k2

ρ
ω + (4πGρ − v2

sk2) = 0
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Analysis of the Jeans Mechanism

The nature of ω is responsible of two regimes for δρ:
• exponential → collapse
• oscillatory → no structure formation

The dispersion relation has the solution

ω = i
ζk2

2 ρ
±

√

−k4ζ2

4ρ2
+ v2

sk2 − 4πGρ

Behavior of ω

ω̄ = −k4ζ2

4ρ2 + v2
sk2 − 4πGρ

ω̄ 6 0 ω = iz ⇒ δρ ∼ e−zt

ω̄ > 0 ω = x + iy ⇒ δρ ∼ e−yt cos x

• The pure oscillatory regime of the ideal fluid Jeans Model is lost
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Analysis of the Jeans Mechanism

The solutions of the eq ω̄ = 0 are

K1 =
√

2
(

1 −
√

1 − K2
J ζ̄2

)
1
2

/ ζ̄ K2 =
√

2
(

1 +
√

1 − K2
J ζ̄2

)
1
2

/ ζ̄

where : ζ̄ = ζ / ρvs KJ =

√

4πGρ

v2
s

• The relations K1 > 0, K2 > 0, K1 < K2 holds.

• Constraint on the viscosity coefficient: (1 − K2
Jλ2) > 0 → ζ 6

√

v4
sρ

4πG = ρvs

KJ
= ζc

Estimation in the recombination era, after decoupling

p =
c2

ργ−1
0

ργ MJ ∼ 106M⊙ γ = 5/3 ρc = 1.879h2 · 10−29 g cm−3 h = 0.7

z = 103 ρ = ρc z3 = 0.92·10−20 g cm−3 ρ0 = 9.034·10−7 g cm−3 vs = 8.39·105 cm s−1

ζc = 7.38 · 104 g cm−1 s−1

confronting this threshold value with usual viscosity (e.g. Hydr. = 8.4 · 10−7g cm−1 s−1)
we can conclude that the range ζ 6 ζc is the only of physical interest
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Analysis of the Jeans Mechanism

Finally we obtain: ω̄ 6 0 : k 6 K1 e K2 6 k ω̄ > 0 : K1 < k < K2

We study now the δρ exponential solution for ω̄ 6 0

δρ = Ae−ik·x ew t w = − ζk2

2ρ
∓

√

k4ζ2

4ρ2
− v2

sk2 + 4πGρ

Structure formation: exponential collapse

w > 0 iff k < KJ =

√

4πGρ

v2
s

KJ < K1 < K2
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Analysis of the Jeans Mechanism

As result we show how the structure formation occurs if

M > MJ = λ3
Jρ =

(

2π

KJ

)3

ρ = π
3
2

v3
s

√

G3ρ

→ the viscous effects do not alter the threshold value of the Jeans Mass
but change the behavior of the perturbation: no pure oscillatory regime

We can reassume the behavior of the density perturbations:

k < KJ δρ ∼ ewt

KJ < k < K1 δρ ∼ e−wt

K1 < k < K2 δρ ∼ e−
ζk2

2ρ
t a(cosw0t + α)

K2 < k δρ ∼ e−wt

where w > 0, w0 = ±
√

− k4ζ2

4ρ + v2
sk2 − 4πGρ
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Analysis of the Jeans Mechanism

Pure Jeans Model : non viscous limit ζ = 0.
In this picture we have ζ̄ → 0: K1, K2 → ∞ and

w →
√

−v2
sk2 + 4πGρ

which results to be real in correspondence of the Jeans range k < KJ

• If k > KJ , δρ behave like two progressive sound waves, of constant amplitude,

propagate in the directions ±k with velocity cs = vs

√

1 − (λ/λJ )2

→ λ → 0: cs ∼ vs (pure sound waves)
→ λ → λJ cs ∼ 0 (stationary waves)

No pure oscillatory regime → decreasing exponential or dumped oscillation

Qualitative analysis of the top-down scheme: comparison between two evolutions.

→ collapsing agglomerate with M ≫ MJ

→ internal sub structure with M < MJ

Perturbation validity limit: δρ/ρ ∼ 0.1 (recombination era parameters, no expansion: ρ = const)
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Analysis of the Jeans Mechanism
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Galaxy δG → MG = 1012 M⊙ (dashed line) ζ = 0.00001 g cm−1 s−1

Star δS → MS = 10 M⊙ (normal line) : it does not collapse but it survives
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Analysis of the Jeans Mechanism
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Galaxy δG → MG = 1012 M⊙ (dashed line) ζ = 14 g cm−1 s−1

Star δS → MS = 1 M⊙ (normal line) : it vanish Top-down mech. suppressed
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Section 3

Expanding Universe Generalization
We here calculate the behavior of small fluctuations, using Newtonian eqs,
but now taking into account the Universe expansion.

No “Jeans swindle” : zeroth-order solutions are derived by the motion eqs of the
isotropic and homogeneous Universe - no static and constant solution

• Matter-dominated era: p ≪ ρ
very small energy density → no bulk viscosity in the unperturbed dynamics

ζ = ζo ρs s > 0

→ We can safely employ Newtonian mechanic (perturbation theory) to deal with
astronomical problems in which the energy density is dominated by non-relativistic
particles and in which the linear scales involved are small compared with the
characteristic scale of the Universe
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Expanding Universe Generalization

Zeroth-order dynamics: Friedmann Eqs for homogeneous and isotropic Universe

3ä = −4πG(ρ + 3p) a aä + 2ȧ2 + 2K = 4πG(ρ − p) a2 ȧ2 + K =
8πG

3
ρ a2

where a(t) is the scale factor and K is the curvature constant

→ Matter-dominated era EoS: p ≪ ρ

→ Background solutions:

ρ = ρ0

( a3
0

a3

)

v = r
ȧ

a
∇φ = r

4πGρ

3

(The Euler eq is verified since the Friedmann eqs hold)
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Expanding Universe Generalization

We recall the Newtonian motion eqs: the starting point for the perturbation theory

∂ρ

∂t
+ ∇ · (ρv) = 0

∂v
∂t

+ (v · ∇)v +
∇p

ρ
+ ∇φ − ζ

ρ
∇(∇ · v) = 0

∇2φ = 4πGρ

We add small fluctuations

→ ρ + δρ p + δp φ + δφ v + δv

and with the following relations

ρ̇ = −ρ̇ 3
ȧ

a
∇ · v = 3

ȧ

a
∇2v = 0 v̇ =

r
a2

(a ä − ȧ2)
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Expanding Universe Generalization

we get the perturbed system - neglecting second order terms (δp = v2
s δρ)

∂

∂t
δρ + 3

ȧ

a
δρ +

ȧ

a
(r · ∇)δρ + ρ ∇ · δv = 0

∂

∂t
δv +

ȧ

a
δv +

ȧ

a
(r · ∇)δv +

v2
s

ρ
∇ δρ + ∇ δφ − ζ

ρ
∇ (∇ · δv) = 0

∇2δφ = 4πGδρ

• The eqs above are spatially homogeneous
→ we expect to find plane waves solutions: δρ(r, t) → δρ(t) e

i r·q
a(t)

(likewise for δv and δφ)

∂

∂t
δρ + 3

ȧ

a
δρ +

i ρ

a
(q · δv) = 0 where r ≪ a , r/a ∼ 0

∂

∂t
δv +

ȧ

a
δv = − i v2

s

a ρ
q δρ + 4πiGa δρ

q
q2

− ζ

a2 ρ
q (q · δv)
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Expanding Universe Generalization

It is now convenient to decompose δv into parts normal and parallel to q

δv = δv⊥ + iq ǫ with q · δv⊥ = 0 ǫ = − i
q2 (q · δv)

We finally get (setting δρ = ρ(t) δ)

∂

∂t
δv⊥ +

ȧ

a
δv⊥ = 0 ǫ̇ +

( ȧ

a
+

ζ q2

ρ a2

)

ǫ =
(4πGρa

q2
− v2

s

a

)

δ δ̇ =
q2

a
ǫ

Rotational modes : governed by the first of the eqs above.

→ They are not affected by the presence of viscosity

δv⊥(t) ∼ a−1(t)

velocity perturbations normal to q decay as 1/a during the Universe expansion
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Expanding Universe Generalization

Compressional Modes : governed by the equation

δ̈ +
(

2
ȧ

a
+

ζq2

ρ a2

)

δ̇ +
( v2

s q2

a2
− 4πGρ

)

δ = 0

• Physical wave vector: k = q/a

• Assumption: a(t) ≪ a0 (ȧ2 , 8πρa2/3 ≫ 1) → K = 0 zero curvature solution

a ∼ t
2
3 ρ =

1

6πGt2
p ∼ ργ vs =

(

γp

ρ

)
1
2

⇒ vs ∼ t1−γ

• Using the relation ζ = ζoρs we obtain

ζ = ζ̄o t−2s ζ̄o = ζo/(6πG)s
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Expanding Universe Generalization

The main equation rewrites now

δ̈ +

[

4

3 t
+

χ

t2(s−1/3)

]

δ̇ +

[

Λ2

t2γ−2/3
− 2

3 t2

]

δ = 0

→ where χ and Λ are two constants:

χ =
t2(s−1/3) ζq2

ρ a2
Λ2 =

t2γ−2/3 v2
sq2

a2

This eq can not be analytically solved in general → we set s = 5/6

δ̈ +

[

4

3
+ χ

]

δ̇

t
+

[

Λ2

t2γ−2/3
− 2

3 t2

]

δ = 0
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Expanding Universe Generalization

The solutions are:

δ(t) = t−
1
6−

χ
2

[

C1 Jn

(Λt−γ̄

γ̄

)

+ C2 Yn

(Λt−γ̄

γ̄

)

]

where J e Y denotes the Bessel functions of first and second species respectively

n = −
√

25 + 6χ + 9χ2 / (6 γ̄) γ̄ = γ − 4
3

• Bessel functions are power-laws or oscillate in the asymptotic limits:

J, Yn(x) ∼ cos

sin
(x) x ≫ 1 J, Yn(x) ∼ x±n x ≪ 1

Threshold value of the argument: it change regime of the density contrast evolution

Λ t−γ̄

γ̄
< 1 ⇒ t <

Λ1/γ̄

γ̄1/γ̄
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Expanding Universe Generalization

Expressing the parameters for an adiabatic Universe → γ > 4/3 we get

k < K̄J =

√

6πGρ

γ̄2 v2
s

which is substantially the same as the Jeans condition : KJ =
√

4πGρ
v2

s

Solution will apply for a matter-dominated Universe after recombination → 4/3 < γ < 5/3

Pure adiabatic case γ = 5/3 n = 1
2

√

25 + 6χ + 9χ2 γ̄ = 1/3

If k < K̄J we get an exponential behavior of the Bessel functions:

δ ∼ t−1/6−χ/2 ∓ n/3

and the condition n/3 > 1/6 + χ/2 is satisfied ∀χ → gravitational collapse
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Expanding Universe Generalization

• Non-viscous limit: δ ∼ t2/3 χ = 0 for k < K̄J

The viscous effects are summarized by the constant χ:

→ Damping of the density contrast evolution

→ The threshold Jeans mass can be addressed also in presence of viscosity
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Conclusions
• The effects that viscosity induced on the motion equation in Newtonian

approximation are briefly summarized. In particular the Navier-Stokes equation is
derived.

• A generalization of the Jeans mechanism for the structure formation is addressed
in presence of bulk viscosity. The threshold value of the Jeans mass is still
obtained the viscosity is found to affect the behavior of the density contrast. In
particular, dissipative effects induce a dumping of the perturbation growth
suppressing the top-down structure formation as far as they increase.

• If the expansion of the Universe is taken into account similar results are obtained
and the concept of the Jeans length still remains valid.
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