Plasminos – collective excitations of relativistic fermions

Barbara Betz

Stückelberg Workshop Pescara, July 2008

QCD – Quantum Chromodynamics

- 'ordinary' nuclear matter
 - * 3 (light) quarks (fermions)
 - * interact via gluons (bosons)
 - * carry color charge

• main aspects

- * confinement: isolated quarks are never observed
- asymptotic freedom: interaction becomes arbitrarily weak at shorter distances

Jefferson Lab, December 2007

Phase diagram of QCD

- at high temperatures and/or densities
 - free quarks and gluons (QGP)
- at small temperatures and densities
 - bound quarks and gluons (hadrons)
- at large densities and low temperatures
 - * attractive interacton between quarks
 - * new ground state of matter color superconductivity

Compact star

- Atmosphere: ionised atoms, nuclei and electrons
- Outer crust: nuclei and free electrons
- Inner crust: nucleons
- Outer core: composed of n, p, e^- and muons
- Inner core: densities above saturation, exotic matter

[Irina Sagert, Palaver University Frankfurt, June 2008]

F. Weber, astro-ph/0407115

Quasiparticles

- Quasiparticles:
 - * excitations in a system of interacting particles
- Quasiparticle models (QPM) for QCD
 - * useful phenomenological parametrization for matter (above T_c)
 - * describes QGP as assembly of non-interacting excitations
- Quasiparticles are characterized by their dispersion relations
- dispersion relations: poles of the propagator (real part)

phonon dispersion relation, Hans–Erik Nielsson, Harvard University

Plasminos I

- relativistic fermionic systems
 - quarks, antiquarks and gluons (QCD)
 - electrons, positrons and photons (QED)
- high temperature/ density
 - \rightarrow 2 types of excitations
- particles and antiparticles
- \diamond additional collective excitations: \Rightarrow plasmino and anti-plasmino

G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043

Plasminos II

GOETHE

- fermionic analogon to plasma oscillation
 - * plasmon is a quantum of a plasma oscillation
 - * 'plasmino': fermionic excitation, 'plasmon': bosonic excitation
- significant characteristics of dispersion relation:
 - * minimum at certain $p^* \neq 0$
 - residue vanishes for large momenta
 - * energy gap at p = 0
 - * meets particle branch at p = 0
 - * plasmino branch has opposite chirality and helicity

G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043

Chirality

- chirality: an object differs from its mirror image
- helicity: projection of the spin onto the momentum direction high—energy limit: helicity = chirality
- massive particle P: moves with v < c
 - if P is left-handed in the laboratory system,
 - P is right-handed in a rest frame moving faster than P
 - \Rightarrow chirality not conserved
- massless system: chirality is conserved

Using the chirality and helicity projectors

$$\mathcal{P}_{r,l} \equiv \frac{1 \pm \gamma_5}{2} \qquad \qquad \mathcal{P}_{\pm}(\vec{p}) \equiv \frac{1 \pm \gamma_5 \gamma_0 \vec{\gamma} \cdot \hat{p}}{2}$$

and the energy projectors are

$$\Lambda_{\vec{p}}^{+} = \mathcal{P}_{r+}^{+} + \mathcal{P}_{l-}^{+} = \frac{1 + \gamma_0 \vec{\gamma} \cdot \hat{p}}{2}$$
$$\Lambda_{\vec{p}}^{-} = \mathcal{P}_{r-}^{-} + \mathcal{P}_{l+}^{-} = \frac{1 - \gamma_0 \vec{\gamma} \cdot \hat{p}}{2}$$

- ⇒ $\Lambda_{\vec{p}}^+$: product of projectors with the same chirality and helicity (++ and --)
- ⇒ $\Lambda_{\vec{p}}^-$: product of projectors with the opposite chirality and helicity (+– and –+)

Chirality of Plasminos II

- for each energy projector there are two solutions:
- * ψ^+ : particles and antiplasminos
- * ψ^- : antiparticles and plasminos
- \Rightarrow plasmino branch has opposite chirality and helicity

G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043

Plasminos – what is known?

- o for high temperatures,
 - * all quarks, charged leptons and neutrinos have a thermal mass and a plasmino branch
- for high temperatures and chiral symmetry:
 - * plasminos exist independent of kind of interaction
- included into the calculation of dilepton and strangeness production [J. Letessier, J. Rafelski and A. Tomsi, Phys, Lett. B 323 (393) 1990]
- neutrino emissivity of a weak interacting plasma (small T) is reduced due to the annihilation $e^-\tilde{e}^+ \rightarrow \nu\bar{\nu}$

[E. Braaten, ApJ 392 (70) 1992]

 so far, no unambiguous experimental signal for plasminos could be found

Plasminos at High Temperatures

- First investigations by H. Weldon [Phys, Rev. D 26 (2789) 1982]
- Kitazawa et al. (see below): $T > T_c$ of chiral transition
- Yukawa model for massive scalar
- three-peaked structure due to
 - * mass of exchange boson
 - mixture of processes leading to upper and lower excitation (resonant scattering)
- ρ₊ (p,ω) • $T \gg m$ two-peaks 10 8 6 4 2 0 0.1 spectral density for T/m = 1.20.2 p/m 0.4 arXiv:0706.2697 [hep-ph] 0.3 -0.4 ω/m 0.4 -0.8

Quasiparticle Models (QPM) are used to

- calculate thermodynamic properties \Rightarrow EoS:
 - * effective action Γ
 - \Rightarrow grand canonical ensemble $\Omega = -T\Gamma$
 - * self-energies
 - \Rightarrow are functional derivaties of the effective action
 - * entropy: $s = -V^{-1} \frac{\partial \Omega}{\partial T}|_{\mu}$
 - \Rightarrow pressure

Plasminos and QPM II

• using a QPM in the HTL limit

(R. Schulze, M. Bluhm, B. Kämpfer [Eur.Phys.J.ST 155:177-190,2008])

 describes translational invariant QGP in equilibrium without spontaneous symmetry breaking

HTL (Hard Thermal Loop) limit: $T\sim\omega,p$

Plasminos and QPM III

- $\mu = 0$: matches lattice results
- extension to $\mu \neq 0$: for unambiguousness include collective modes

Eur.Phys.J.ST 155:177-190,2008

Plasminos – How to calculate

- dispersion relation: $G^{-1}(P) = G_0^{-1}(P) + \Sigma(P)$ spectral density: $\rho(P) = -\frac{1}{\pi} \operatorname{Im} G(P)$
 - self-energy $\Sigma = \frac{\delta \ln Z_I}{\delta G_0}$: Yukawa interaction: \mathcal{L}_I action: S_I

partition function:

 $\mathcal{L}_{I} = g\bar{\psi}\psi\varphi$ $S_{I} = \int_{0}^{\beta} d\tau \int d^{3}\vec{x}\mathcal{L}_{I}(\vec{x},\tau)$

 $Z = N' \int [d\varphi] e^S$

 $\ln Z = \ln Z_0 + \ln Z_T$

B. Betz and D. Rischke, Phys.Rev.D75:065022,2007 J.-P. Blaizot and J.-Y. Ollitrault, Phys. Rev. D 48, 1390, 1993

Plasminos – Lowest Order Correction

• The lowest order correction to $\ln Z_0$ is

• The fermion self-energy is given by $\Sigma = \frac{\delta \ln Z_I}{\delta G_0}$:

•
$$\Sigma(P) = -g^2 T \sum_n \int \frac{d^3 \vec{k}}{(2\pi)^3} \mathcal{D}_0(K-P) G_0(K)$$

- * free-particle fermion propagator: $G_0^{-1}(K) = K + \mu \gamma_0$
- * free-particle boson propagator: $\mathcal{D}_0(Q) = -1/Q^2$
- * using the mixed representation:

 $\mathcal{D}_0(q_0, \vec{q}) = \int_0^{\frac{1}{T}} d\tau e^{q_0 \tau} \mathcal{D}_0(\tau, \vec{q}) \quad \mathcal{D}_0(\tau, \vec{q}) = T \sum_n e^{-q_0 \tau} \mathcal{D}_0(q_0, \vec{q})$ $\mathcal{G}_0(p_0, \vec{p}) = \int_0^{\frac{1}{T}} d\tilde{\tau} e^{p_0 \tilde{\tau}} \mathcal{G}_0(\tilde{\tau}, \vec{p}) \quad \mathcal{G}_0(\tilde{\tau}, \vec{p}) = T \sum_n e^{-p_0 \tilde{\tau}} \mathcal{G}_0(p_0, \vec{p})$

 performing the sums over the Matsubara frequencies, one obtains ...

$$\Sigma(P) = -g^2 \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{2E_b} \sum_{e=\pm} \Lambda^e_{\vec{k}} \gamma_0 \left[\frac{1 - N^e_F(k) + N_B(E_b)}{p_0 + \mu - e(k + E_b)} + \frac{N^e_F(k) + N_B(E_b)}{p_0 + \mu - e(k - E_b)} \right]$$

- energy projectors $\Lambda_{\vec{p}}^{\pm} = \frac{1}{2}(1 \pm \gamma_0 \vec{\gamma} \cdot \hat{p})$
- thermal distribution functions of
 - * fermions/antifermions $N_F^{\pm}(E) = [e^{(E \mp \mu)/T} + 1]^{-1}$
 - * bosons $N_B(E) = (e^{E/T} 1)^{-1}$
- energy of the exchanged boson $E_b = |\vec{k} \vec{p}|$

- projection on positive/negative-energy solutions $\Sigma_{\pm}(P) \equiv \frac{1}{2} \operatorname{Tr} \left[\Lambda_{\vec{p}}^{\pm} \gamma_0 \Sigma(P) \right]$
- and perform an analytic continuation $p_0 + \mu \rightarrow \omega + i\eta$
- * imaginary part $\operatorname{Im} \Sigma_{\pm}(\omega, p) = \operatorname{Im} a(\omega, p) \pm p \operatorname{Im} b(\omega, p)$ * real part $\operatorname{Re} \Sigma_{\pm}(\omega, p) = \operatorname{Re} a(\omega, p) \pm p \operatorname{Re} b(\omega, p)$

Plasminos – Im $\Sigma_{\pm}(\omega, \mathbf{p})$

Im(a+b*p)/µ

energy-momentum plane

Im(a-b*p)/μ

massless fermions (left panel) and antifermions (right panel) for $g^2/4\pi = 1$, at T = 0

Plasminos – Re $\Sigma_{\pm}(\omega, \mathbf{p})$ **3d Plots**

massless fermions (left panel) and antifermions (right panel)

for
$$g^2/4\pi = 1$$
, at $T = 0$

Plasminos – Dispersion Relation

• is given by the roots of the full inverse propagator $G_{\pm}^{-1}(P) \equiv G_{0,\pm}^{-1}(P) + \Sigma_{\pm}(P)$

- * $G_0^{-1}(P) = I \!\!\!/ + \mu \gamma_0 \equiv \gamma_0 \sum_{e=\pm} G_{0,e}^{-1}(P) \Lambda_{\vec{p}}^e$ $G_{0,\pm}^{-1}(P) \equiv p_0 + \mu \mp p$
- * plasmino solutions come from $G_{-}^{-1} = 0$ (opposite chirality)
- * two solutions in space-like region
- coupling constant determines size of momentum region with plasminos
- * decreasing coupling \rightarrow region shrinks

• is determined from $\rho_{\pm}(\omega, p) = -\frac{1}{\pi} \operatorname{Im} G_{\pm}(\omega, p)$

- * $Im \Sigma_{\pm}(\omega, p) = 0 \rightarrow$ spectral density proportional to δ -function
- * particle and plasmino branch: infinite lifetime
- * finite lifetime for antiparticle and antiplasmino

Superconducting fermions – Self-energy

- self-energy: $\Sigma(P) = -g^2 T \sum_n \int \frac{d^3 \vec{k}}{(2\pi)^3} \mathcal{D}_0(K-P) \mathcal{G}_0(K)$
 - * quasifermion propagator \mathcal{G}_0

$$\mathcal{G}_0(P) = \sum_{e=\pm} \frac{p_0 - (\mu - ep)}{p_0^2 - (\mu - ep)^2 - |\phi_e(P)|^2} \Lambda_{\vec{p}}^e \gamma_0$$

- performing Matsubara sums, with mixed representation: $\Sigma(P) = -g^2 \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{4E_b}$ $\sum_{e=\pm} \Lambda^e_{\vec{k}} \gamma_0 \left[\left(1 - \frac{\mu - ek}{\epsilon_e} \right) \frac{1}{p_0 - \epsilon_e - E_b} + \left(1 + \frac{\mu - ek}{\epsilon_e} \right) \frac{1}{p_0 + \epsilon_e + E_b} \right]$
- \Rightarrow calculate imaginary and real part of the self-energy

Superconducting fermions – Im $\Sigma_{\pm}(\omega, \mathbf{p})$

massless superconducting fermions (left panel) and antifermions (right panel) for $g^2/4\pi = 1$, at T = 0

GOETHE UNIVERSI FRANKFURT AM

Superconducting fermions – $\operatorname{Re} \Sigma_{\pm}(\omega, \mathbf{p})$

massless superconducting fermions (left panel) and antifermions (right panel) for $g^2/4\pi = 1$, at T = 0

Superconducting fermions – Disp. rel. I

is given by the poles of the propagator

$$\mathcal{G}^{\pm} = \left([G_0^{\pm}]^{-1} + \Sigma^{\pm} - \Phi^{\mp} \left\{ [G_0^{\mp}]^{-1} + \Sigma^{\mp} \right\}^{-1} \Phi^{\pm} \right)^{-1}$$

- * free propagator for particles and charge–conjugate particles $[G_0^{\pm}]^{-1}(P) = \gamma_0 \sum_{e=\pm} [p_0 \pm (\mu ep)] \Lambda_{\vec{p}}^{\pm e}$
- * Σ^+ was computed above
- * $\Sigma^{-}(P) \equiv C [\Sigma^{+}(-P)]^{T} C^{-1}$ is self-energy for charge-conjugate particles
- * charge conjugation matrix $C = i\gamma^2\gamma_0$
- * Φ^+ is order parameter for condensation $\Phi^+(P) = \sum_{e=\pm} \phi_e(P) \Lambda^e_{\vec{p}} \gamma_5$

Superconducting fermions – Disp. rel. III

positive energy dispersion relation, $(\mathcal{G}^+_+ \text{ and } \mathcal{G}^-_-), g^2/(4\pi) = 1, T = 0$

negative energy dispersion relation, $(\mathcal{G}^-_+ \text{ and } \mathcal{G}^+_-), g^2/(4\pi) = 1, T = 0$

 $\mathcal{G}_{e}^{\pm}(P) \equiv \frac{1}{2} \operatorname{Tr} \left[\mathcal{G}^{\pm}(P) \gamma_{0} \Lambda_{\vec{p}}^{e} \right]$

1.5

2

.....

Superconducting fermions – Spec. Dens. I

• small momenta: particle and hole excitations are undamped ($Im \Sigma_+(\omega, p) = 0$) GOETHE

Superconducting fermions – Spec. Dens. II GOETHE

antiparticle and antihole branches are strongly damped

Summary

We studied the fermionic excitation spectrum

- * used eg. in Quasiparticle Models (QPM),
- * for normal- and superconducting systems,
- for massive/massless fermions interacting with massive/massless bosons,
- * for vanishing and non-vanishing temperature and finite chemical potential.

We discussed

- * the calculation of the dispersion relations,
- * the occurring excitations,
- * and their relevance (for a special QPM).

Back-up Slides

Plasminos –collective excitations of relativistic fermions – p.33/37

Plasminos – Im $\Sigma_{\pm}(\omega, \mathbf{p})$

Ib: Im
$$a = -\frac{g^2}{32\pi} \frac{1}{4p} (2\mu - \omega - p) \times (2\mu + \omega + p)$$

 $\lim b = -\frac{g^2}{32\pi} \frac{1}{2p^3} (2\mu - \omega - p) \times [\omega^2 - p^2 - \frac{\omega}{2} (2\mu + \omega + p)]$
Ia: Im $a = \frac{g^2}{32\pi} \omega$, Im $b = -\frac{g^2}{32\pi}$

II:
$$\lim a = \frac{g^2}{32\pi} \frac{1}{4p} (2\mu - \omega - p) (2\mu + \omega + p)$$
$$\lim b = \frac{g^2}{32\pi} \frac{1}{2p^3} (2\mu - \omega - p) \left[\omega^2 - p^2 - \frac{\omega}{2} (2\mu + \omega + p) \right]$$
III:
$$\lim a = -\frac{g^2}{32\pi} \omega, \lim b = \frac{g^2}{32\pi}$$

IV: Im a = Im b = 0

Plasminos – Re $\Sigma_{\pm}(\omega, \mathbf{p})$

• $\operatorname{\mathsf{Re}}\Sigma_{\pm}(\omega,p) = \operatorname{\mathsf{Re}}a(\omega,p) \pm p\operatorname{\mathsf{Re}}b(\omega,p)$

$$\begin{split} \mathsf{Re}\,a(\omega,\vec{p}) &= -\frac{g^2}{32\pi^2} \Biggl\{ \mu + \frac{(2\mu - \omega - p)(2\mu + \omega + p)}{4p} \ln \left| \frac{\omega + p}{\omega + p - 2\mu} \right| \\ &\quad -\frac{(2\mu - \omega + p)(2\mu + \omega - p)}{4p} \ln \left| \frac{\omega - p}{\omega - p - 2\mu} \right| \\ &\quad +\omega \ln \left| \frac{\omega^2 - p^2}{\mu^2} \right| \Biggr\} \\ \mathsf{Re}\,b(\omega,\vec{p}) &= -\frac{g^2}{16\pi^2} \Biggl\{ \frac{\mu^2}{p^2} - \frac{\omega\mu}{2p^2} \\ &\quad +\frac{(2\mu - \omega - p)}{4p^3} \left[\omega^2 - p^2 - \frac{\omega}{2}(2\mu + \omega + p) \right] \ln \left| \frac{\omega + p}{\omega + p - 2\mu} \\ &\quad -\frac{(2\mu - \omega + p)}{4p^3} \left[\omega^2 - p^2 - \frac{\omega}{2}(2\mu + \omega - p) \right] \ln \left| \frac{\omega - p}{\omega - p - 2\mu} \right| \\ &\quad -\frac{1}{2} \ln \left| \frac{\omega^2 - p^2}{\mu^2} \right| \Biggr\} \end{split}$$

Superconducting fermions – Disp. rel. II

• To distinguish the solutions, we use

$$\mathcal{G}_e^{\pm}(P) \equiv \frac{1}{2} \operatorname{Tr} \left[\mathcal{G}^{\pm}(P) \, \gamma_0 \Lambda_{\vec{p}}^e \right]$$

$$\Rightarrow \mathcal{G}_{+}^{+}(P) = \frac{p_{0}-\mu+p-\Sigma_{+}(-P)}{[p_{0}+\mu-p+\Sigma_{+}(P)][p_{0}-\mu+p-\Sigma_{+}(-P)]-|\phi_{+}(P)|^{2}}$$
$$\mathcal{G}_{-}^{+}(P) = \frac{1}{p_{0}+\mu+p+\Sigma_{-}(P)}$$
$$\mathcal{G}_{+}^{-}(P) = \frac{1}{p_{0}-\mu-p-\Sigma_{-}(-P)}$$
$$\mathcal{G}_{-}^{-}(P) = \frac{p_{0}+\mu-p+\Sigma_{+}(P)}{[p_{0}+\mu-p+\Sigma_{+}(P)][p_{0}-\mu+p-\Sigma_{+}(-P)]-|\phi_{+}(P)|^{2}}$$

Plasminos and QPM II

- using a QPM in the HTL limit (R. Schulze, M. Bluhm, B. Kämpfer, see below)
 - describes translational invariant QGP in equilibrium without spontaneous symmetry breaking

Eur.Phys.J.ST 155:177-190,2008

Landau damping: collective effect caused by energy transfer between gauge field and plasma particles with $v \sim c$ (resonant particles)