GWs from neutron star oscillations: comparisons between linear and nonlinear evolutions

Pescara, July 18th 2008 S.Bernuzzí Parma University and INFN L.Baiotti (Tokyo), G.Corvino (Parma), R. De Pletri (Parma) and

A.Nagar (IHES)

Outline of the work

GWs from even-parity oscillation of a perturbed TOV star

Compare the results obtained from 3D FGR simulations with perturbative ones (1D,linear)

Zerilli extraction

 \checkmark Ψ_4 extraction

- Quadrupole formulas
- Non-linear effects (as a function of the amplitude of the initial perturbation)

Motivation

GWS from NS oscillations

excíted e.g. after Supernova Core Collapse non-línear oscillations !

test-bed for 3D wave extraction methods (in non-vacuum spacetimes) and for analysis methods

Why a linear time-domain code?

Perturbative methods: quasi equilibrium systems 1D: computationally less expensive then 3D Accurate results (more resolution)

Check 3D extraction methods Basis for non-linear analysis

Startegy: the double approach

Startegy: the double approach

1D time-domain code: PerBaCCo

PerturBative Constrained Code

- All kind of TOV perturbations (RW gauge, spherical coord.)
- Radíal, Axíal and Polar perturbations: (constrained) Wave Eqs
- Standard II order FD schemes
 - ✓ Even-parity: constrained algorithm
- Use tabulated equations of state (EOS) for nuclear matter
- Zeríllí-Moncrief (even-parity) and Regge-Wheeler (odd-parity) gauge invariant functions

$$h_{+} - ih_{\times} = \frac{1}{r} \sum_{l=2}^{\infty} \sum_{m=-\ell}^{\ell} N_{\ell} \left(\Psi_{\ell,m}^{(e)} + i\Psi_{\ell,m}^{(o)} \right)_{-2} Y_{\ell,m}(\theta,\phi)$$

REFS: [Nagar 2004 / gr-.qc/0408041 2004 / Nagar et al. 2004 / Bernuzzi et al 2008 / Bernuzzi & Nagar 2008]

Cactus-Carpet-Whisky: setup

- Metric/Matter evolution:
 - ✓ (ADM) NOK-BSSN + GRHD Cons Form
 - ✓ gauge: "I+log" + Gamma Driver
 - ✓ MoL: ICN
 - ✓ HRSC: Marquina + PPM
- Grid:
 - ✓ 3 cubic boxes, Dx=0.5
 - ✓ Octant Sym
 - ✓ CFL = 0.25

Developed mainly @ AEI, LSU

Computer Cluster in Parma

★ 16 nodes: bí-processor opteron 2 GHz

* 4 GB RAM

* 3 TB RAID 5 storage

\star infiniband

* 32 nodes: bí-processor Pentíum III - 1.5 GB RAM

- * 100BaseT fast ethernet
- * Peak: 100 Gflops

*ALBERT100

Initial Data: Whisky_PerturbTOV

- TOV eqs (Whisky_TOVSolverC)
- Perturbation (Whisky_PerturbTOV):
 - \checkmark add pressure perturbation
 - \checkmark solve (perturbative) constraints for each multipoles
 - ✓ construct perturbed metric
 - Fix a specific multipole (I constraint eq)
 - Axisymmetric pressure perturbation
 - Metric perturbation: $\delta s_{\ell 0}^2 = (\chi_{\ell 0} + k_{\ell 0})e^{2a}dt^2 2\psi_{\ell 0}e^{a+b}dtd\bar{r} \\ + e^{2b}\left[(\chi_{\ell 0} + k_{\ell 0})d\bar{r}^2 + \bar{r}^2k_{\ell 0}d\Omega\right]Y_{\ell 0}$

Matter perturbation

(Linearised) Hamiltonian constraint solution

Equilibrium model and radial modes

- Perfect fluid, Polytropic Model AO $M = 1.4 M_{\odot}$ $\rho_c = 1.28 \times 10^{-3}$ R = 9.57
- Stable Evolution unperturbed model (Radial Modes)

n	Pert.[Hz]	3D [Hz]	Diff. [%]
0	1462	1466	0.3
1	3938	3935	0.1
2	5928	5978	0.8

• Stable Evolution of the sequence AU

(Uniformly rotating models and fixed mass)

MODEL	F [Hz]	F(CF) [Hz]
AU0	1466	1458
AU1	1369	1398
AU2	1329	1345
AU3	1265	1283
AU4	1166	1196
AU5	1093	1107

[Dimmelmeier et al 2007] S.Bernuzzí - Pescara - July, 18th 2008

Even-parity perturbative waves: identikit

Radial grid with 300pts inside the star r=500M 0.5 F(e) Long evolution (about 1 sec) -0.5 0.3 07 0.8 0.5 0.6 time [s] -3 1.5 <u>× 1</u>0 1. Fourier anaysis r=400M 2. Fit analysis 0.5 କ୍ଷି 0 3. Finite extraction effects -0.5 11 × 10 -1 10.5 -1.5 10 Π 200 600 400 800 1000 9.5 u=t-r max $\Psi^{(e)}$ 9 8.5 8 mode 7.5 7 6.5 L S.Bernuzzí - Pescara - July, 18 100 200 500 300 400 r/M

S.Bernuzzí - Pescara - July, 18th 2008

2. Fit analysis - QNMs template:

2. Fit analysis - results:

Parameter	Value	Conf-	Conf+
ν_{20}	$1.5837369e{+}03$	1.5837368e+03	1.583737e + 03
$ u_{21}$	3.7069413e + 03	$3.7069401e{+}03$	3.7069424e + 03
$lpha_{20}$	3.7358	3.7349	3.7367
$lpha_{21}$	4.22 e-01	4.15e-01	4.29e-01
A_{20}	1.31452 e-03	1.31430e-03	1.31475e-03
A_{21}	3.52 e- 05	3.50e-05	3.53e-05
ϕ_{20}	2.809e-01	2.807 e-01	2.811e-01
ϕ_{21}	3.965 e- 01	3.929e-01	4.002e-01

Damping times:
$$au_f = 0.268 \, \sec (0.1\%)$$

 $au_{p_1} = 2.28 \, \sec (2\%)$

3. Finite extraction effects

3. Finite extraction effects

Comparing ID VS 3D Waves

Different values of the initial perturbation amplitude:

h = [0.001, 0.01, 0.05, 0.1] := [h0, h1, h2, h3]

600

600

 \blacktriangleright wave Extraction at r=80M

h	$\nu_{\rm 3D}^f [{\rm Hz}]$	$\operatorname{Diff.}[\%]$	$\nu_{\rm 3D}^{p_1} [{\rm Hz}]$	Diff.[%]
h0	1578	0.2	3705	0.5
h1	1576	0.3	3705	0.5
h2	1573	0.5	3635	2.4
h3	1623	2.7	3565	4.3

initial "burst"

unphysical and related to the constraint violation and to the Zerilli 3D extraction ...

¥4 extraction

¥4 extraction

$$\Psi^{(e)}(t) \propto \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\}$$

= $Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\}$
= $Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left(r \Psi^{4}(t'', r) + f(t'', r) \right)$
= $Q_{0} + Q_{1}t + \left[\int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^{4}(t'', r) \right] + \sum_{k=2}^{n} F_{k}(r)t^{k} + \dots$

$$\Psi^{(e)}(t) \propto \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\}$$

= $Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\}$
= $Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left(r \Psi^{4}(t'', r) + f(t'', r) \right)$
= $Q_{0} + Q_{1}t + \left[\int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^{4}(t'', r) \right] + \sum_{k=2}^{n} F_{k}(r)t^{k} + \dots$

$$\begin{split} \Psi^{(e)}(t) &\propto \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\} \\ &= Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^{4}(t'', r) \right] \right\} \\ &= Q_{0} + Q_{1}t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left(r \Psi^{4}(t'', r) + f(t'', r) \right) \\ &= Q_{0} + Q_{1}t + \left[\int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^{4}(t'', r) \right] + \sum_{k=2}^{n} F_{k}(r)t^{k} + \dots \\ &= 2. \text{ "slow" variation} \\ \\ & \text{Let's try:} \\ \hline \Psi^{(e)}(t, r) \propto \int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^{4}(t'', r) + Q_{0} + Q_{1}t + F_{2}t^{2} + \dots \end{split}$$

S.Bernuzzí - Pescara - July, 18th 2008

23

(Once corrected for the floor) Zeríllí from the $\Psi 4$ extraction is perfectly consistent with the perturbative

Non-línear effects

Mode couplings:

- non-axisymmetric + odd
 parity modes : suppressed
- ✓ radial modes

Fourier analysis of
$$\langle \rho
angle_{\ell,m}(t) = \int d^3x \rho(t,\mathbf{x}) Y_{\ell,m}$$

"Weak" couplings $u_{coupl} = \nu_1 \pm \nu_2$

[Passamonti et al. 2006 / Dimmelmeier et al 2007]

25

 $\langle \rho \rangle_{0,0}$

Quadrupole extraction

Functional form:

$$I_{ij}[\varrho] \equiv \int d^3x \varrho x_i x_j$$

No "Standard Quadrupole"
in full GR.

Possible generalizations worth to try

Multipole:

$$rh_{2,0} = \sqrt{\frac{24\pi}{5}} (\ddot{I}_{zz} - \frac{1}{3}I)$$

 $SQF: \rho = \rho$

SQF1: $\rho = \alpha^2 \sqrt{\gamma} T^{00}$

[Nagar et al. 2005]

SQF2:
$$\rho = \sqrt{\gamma} W \rho$$

[Blanchet et al 1990/ Shibata Sekiguchi 2003]

SQF3:
$$\rho = u^0 \rho = \frac{W}{\alpha} \rho$$

[Nagar et al. 2005]

(rem. $h_{+} - ih_{\times} = \sum h_{\ell,m} - 2Y_{\ell,m}$) $\ell.m$

$$\begin{split} &\mathrm{SQF}:\ \varrho=\rho\\ &\mathrm{SQF1}:\ \varrho=\alpha^2\sqrt{\gamma}T^{00}\\ &\mathrm{SQF2}:\ \varrho=\sqrt{\gamma}W\rho\\ &\mathrm{SQF3}:\ \varrho=u^0\rho=\frac{W}{\alpha}\rho \end{split}$$

- Frequencies : OK
- Differences in amplitude !

$$\begin{split} &\mathrm{SQF}:\ \varrho=\rho\\ &\mathrm{SQF1}:\ \varrho=\alpha^2\sqrt{\gamma}T^{00}\\ &\mathrm{SQF2}:\ \varrho=\sqrt{\gamma}W\rho\\ &\mathrm{SQF3}:\ \varrho=u^0\rho=\frac{W}{\alpha}\rho \end{split}$$

- Frequencies : OK
- Differences in amplitude !

Summary

- Perturbative ID (Whisky_PerturbTOV)
- Evolve with both 3D FGR and 1D perturbative code
- Wave extraction: WaveExtract (Zerilli),
 Psikadelia (Psi4) and SQFs
- Compare results

Conclusions

- Zeríllí Extraction
 - ✓ 3D Zerilli extraction consistent with Perturbative (linear regime)
 - ✓ Extraction r>80M
 - ✓ initial junk Zerilli Extraction

• ¥4 Extraction

- ✓ 3D Psi4 extraction consistent with Perturbative (linear regime)
- ✓ Extraction r>80M
- ✓ NO junk radiation
- ✓ Off-set subtraction needed

Conclusions

- Zeríllí Extraction
 - ✓ 3D Zerilli extraction consistent with Perturbative (linear regime)

• ¥4 Extraction

 ✓ 3D Psi4 extraction consistent with Perturbative (linear regime)

Comparison with perturbative simulations indicates that

both method must be taken into account to extract accurate waveforms

Conclusions (cont.)

- Quadrupole Extraction
 - ✓ Frequencies arte properly captured
 - ✓ Amplitudes are underestimated
 - ✓ BEST: SQF2
- Non-línear effects
 - ✓ radial couplings
 - ✓ overtones couplings
 - ✓ self coulplings

[Shibata Sekiguchi 2003]

[Passamonti et al. 2006 / Dimmelmeier et al 2007]

Thank you very much!

REFerencies:

Nagar 2004
 2.gr..qc/0408041 2004
 3.Nagar et al. 2004
 4.Bernuzzi, Nagar & De Pietri 2008
 5.Bernuzzi & Nagar 2008
 6.Baiotti et al. 2008 [in preparation]