The GRB classification within the fireshell model: short, long and fake short GRBs

Maria Grazia Bernardini

Carlo Luciano Bianco, Letizia Caito, Maria Giovanna Dainotti, Roberto Guida, Remo Ruffini

3rd Stueckelberg Meeting on Relativistic Field Theories July 8-18, 2008, ICRANet Center, Pescara, Italy.

The Prompt Emission

Great variety of temporal profiles

FRED structure

Hard-to-soft evolution

Spectral lag

Norris et al., 1996, ApJ, 459, 393. Piran, 2004, Phys. Rep., 76, 1143.

The Afterglow

Flares: flux changing significantly on timescales δt_a << T_a Canonical Afterglow: F∝t⁻ª

- Early rapid decay
 (3 < a < 5)
- Shallow intermediate decay (0.5 < a < 1)
- Steeper decay(1 < a < 1.5)

Nousek et al., 2006, ApJ, 642, 389. Chincarini et al., 2005, astro-ph/0506453. Burrows et al., 2005, Science, 309, 1833.

The optically thin fireshell phase

 All the e[±] annihilate and a flash of photons is emitted: the <u>P-GRB</u>

 The accelerated baryons continue their expansion and, interacting with the CBM via inelastic collisions, produce a prolonged emission: the <u>AFTERGLOW</u>.

"Canonical" GRB : P-GRB + Afterglow

Ruffini et al. 2001, ApJ, 555, L113 & 2003, AIP, 668, 16 & 2006, ApJ, 645, L109.

"Canonical GRB" Bolometric luminosity

"<u>IBS Paradigm</u>" (2001):

P-GRB: emitted at the fireshell transparency point

1e+051 1e+050 1e+049 1e+048 nosity (erg/s) 1e+0 1e+046 1e+045 1e+044 1e+043 1e+042 100 0.0001 0.01 1 10000 1e+006 1e+008 arriv*e (*ime (t_a^d) (s) Detector

Afterglow: due to the interaction between the optically thin fireshell and CBM:

$$\frac{dE_{\gamma}}{dt_{a}^{d}d\Omega} = \int_{EQTS} \frac{\Delta\varepsilon}{(\hat{t}_{a}^{d})} \frac{\Delta\varepsilon}{4\pi} v \cos\vartheta \Lambda^{-4} \frac{dt}{dt_{a}^{d}} d\Sigma$$
$$t_{a}^{d} = (1+z) \left(t - \frac{\int_{0}^{t} v(t') dt' + r_{ds}}{c} \cos\vartheta + \frac{r_{ds}}{c} \right)$$

Ruffini et al. 2001, ApJ, 555, L113 & 2003, AIP, 668, 16 & 2006, ApJ, 645, L109.

Ruffini et al., 2001, ApJ, 555, L113; 2002, ApJ, 581, L19; 2003, "Cosmology and Gravitation", AIP, 668.

The afterglow lc

 Don't need to invoke different physical processes

- Interaction with inhomogeneous
 CBM, modeled in spherical shells
 (radial approximation n_{cbm}=n_{cbm}(r))
- Main difference: Gamma factor
- Temporal variability <-- variability in the CBM parameters

Ruffini et al., 2001, ApJ, 555, L107. Bianco & Ruffini, 2005, ApJ, 620, L23. Ruffini et al., 2003, "Cosmology and Gravitation", AIP, 668.

GRB spectrum

Ruffini et al., 2005, Int. J. Mod. Phys. D 14, 97.

 z = 1.949
 Good example of "canonical afterglow"

Prompt Emission:

 $\langle n_{cbm} \rangle = 0.81 \#/cm^{3}$ $\langle R \rangle = 1.4 \times 10^{-7}$ $\delta n/n \sim 10 \#/cm^{3}$ $\Delta \sim 10^{14} cm$ $E_{P-GRB} = 1.98 \times 10^{51} erg$

Kelson & Berger, 2005, GCN3101. Ruffini et al., 2006, ApJ, 645, L109. Vaughan et al., 2006, ApJ, 638, 920.

$$E_{e_{\pm}}^{tot}$$
 = 1.46 x 10⁵³ erg, B = 4.55 x 10⁻³
--> N_{e_{\pm}} = 7.9 x 10⁵⁷, T = 2.0 MeV, γ = 218

<u>Afterglow:</u>

 $\langle n_{cbm} \rangle = 4.8 \times 10^{-4} \, \#/cm^{3}$ $\langle R \rangle = 7.0 \times 10^{-6}$

The "canonical behavior" naturally arises from the fluctuations of the CBM parameters

<u>Ruffini et al., 2006, ApJ, 645, L109.</u> Vaughan et al., 2006, ApJ, 638, 920.

$$E_{e_{\pm}}^{tot}$$
 = 1.46 × 10⁵³ erg, B = 4.55 × 10⁻³
--> N_{e_{\pm}} = 7.9 × 10⁵⁷, T = 2.0 MeV, γ = 218

 $E^{\text{tot}} = 1.8 \times 10^{50} \text{ erg}, B = 7.4 \times 10^{-3}$ --> $N_{p_{+}} = 3.0 \times 10^{55}$, T = 1.5 MeV, $\gamma = 133$ $< n_{cbm} > = 0.16 \#/cm^3$, $< \ll > = 1.0 \times 10^{-8}$

✓ z = 0.106✓ "unusual" burst

Its gamma-ray luminosity is interpreted within our model in a natural way

<u>Bernardini et al., 2005, ApJ, 634, L29.</u> Sazonov et al., 2004, Nature, 430, 646. Watson et al., 2004, ApJ, 605, L101.

The time-integrated spectrum

The power-law behavior of the GRB observed spectra can be obtained starting from thermal spectra

<u>Bernardini et al., 2005, ApJ, 634, L29.</u>

Double intergration over EQTS and observation time

Short vs Long GRBs

-1.5

-2

-1.5

-1

-0.5

0

0.5

log T

1.5

2

2.5

3

Kouveliotou et al., 1996, AIP Conf. Proc., 384, 42. Paciesas et al., 1999, ApJS, 122, 465. Donaghy et al., 2006, astro-ph/0605570.

P-GRB vs Afterglow

 ✓ B → 10⁻²: the P-GRB total energy decreases and it is negligible w.r. to the afterglow one.

 B -> 0 : the afterglow total energy decreases and it is negligible w.r. to the P-GRB one.
 <u>"Genuine" Short</u> GRBs

"Genuine" Short GRBs are Canonical GRBs with B<10⁻⁵

... see De Barros' talk

Ruffini et al. 2001, ApJ, 555, L113.

Effects on the light curves

 \checkmark **B** = 10⁻²: the P-**GRB** is often under the instrumental threshold \checkmark **B** = 10⁻⁴ : the prompt emission is dominated by the P-GRB

A new family of sources

 Norris & Bonnell (2006): "occasional softer, extended emission lasting tens of seconds after the initial spikelike emission comprising an otherwise short burst"

- GRB060614: "hybrid" properties between short and long bursts (... see Caito's talk)
- ✓ Short GRBs' Afterglow Revolution

"the current nomenclature for the two classes (...) is at best misleading"

Norris & Bonnell, 2006, ApJ, 643, 266. Gerhels et al., 2006, Nature, 444, 1044. Gehrels et al., 2005, Nature, 437, 851.

Frontera et al. 1998, ApJ, 493, L67. Costa et al. 1997, Nature, 387, 783. Bloom, Djorgovski & Kulkarni, 2001, ApJ, 554, 678. Van Paradijs et al., 1997, Nature, 386, 686. A "normal" long GRB, with a duration ~ 80 s Long GRBs "Afterglow revolution" ✓ z = 0.695 Prompt emission <- strong</p> pulse during ~ 5 s + three additional pulses of decreasing intensity

 Localized on the outskirt of a faint galaxy

What can we learn from observations?

- The spectral behavior of the last three pulses differs from that of the first one
- The last three GRB pulses and the X-ray afterglow have a similar spectrum

"<u>the emission mechanism producing the X-ray</u> <u>afterglow might be already taking place after</u> <u>the first pulse</u>" (Frontera et al.)

GRB970228 prompt emission

 $E_{e_{\pm}}^{tot} = 1.4 \times 10^{54} \text{ erg}, B = 5.0 \times 10^{-3}$ --> $N_{e_{\pm}} = 1.6 \times 10^{59}, T = 1.7 \text{ MeV}, \gamma_0 = 199$ $\langle n_{cbm} \rangle = 9.5 \times 10^{-4} \text{ #/cm}^3,$ $\langle \mathcal{R} \rangle = 1.5 \times 10^{-7}$

$$E^{\text{theo}}_{P-GRB}$$
 = 1.1% $E^{\text{tot}}_{e\pm}$ =1.54 x 10⁵² erg
VS
 E^{obs}_{P-GRB} = 1.5 x 10⁵² erg

<u>Bernardini et al. 2007, A&A, 474, L13.</u> Frontera et al. 1998, ApJ, 493, L67.

The role of the CBM density

Afterglow peak emission: P-GRB: unchanged!! duration & flux modified 1.2×10^{-5} 2.0x10⁵¹ $n_{cbm} = 1 \#/cm^3$ 1.0x10⁻⁵ _uminosity (dE/(dtdΩ) (ergs/(s*sterad)) 1.5x10⁵¹ Dbserved flux (ergs/(cm²*s) 8.0x10⁻⁶ 6.0x10⁻⁶ 1.0x10⁵¹ 4.0x10⁻⁶ 5.0x10⁵⁰ 2.0x10⁻⁶ $n_{cbm} = 10^{-3} \#/cm^{3}$ 0.0x10⁰ 0.0x10⁰ 20 40 -20 0 60 80 100 Detector arrival time (t_a^d) (s)

$$E_{e_{1}}^{tot} = 1.4 \times 10^{54} \text{ erg}, B = 5.0 \times 10^{-3}$$

Bernardini et al. 2007, A&A, 474, L13.

Prototype for the new class

- Same morphology and spectral properties:
 initial spikelike emission <-- physics of (= P-GRB)
 - soft extended emission <-- physics of the (= "deflated" afterglow) fireshell
- < z > ~ 0.4 <-- deflated afterglow hard to detect

- Most of GRBs observed in galaxy outskirts or in galaxy clusters --> low CBM density + binary nature of the progenitors

GRB060607A

BAT Ic: initial spikelike emission ~ 15 s
 XRT Ic: canonical behavior + flaring activity
 Peak of the IR emission observed by REMIR
 z = 3.082

Covino et al., arXiv:0710.0727.

GRB060607A as a "fake short" GRB

GRB060607A cannot be interpreted as a fake short GRB with realistic values of the parameters!!!!!!

..... as a typical long GRB

 $E_{e_{\pm}}^{tot} = 2.5 \times 10^{53} \text{ erg}$ B = 3.0 × 10⁻³ --> N_{e_{\pm}} = 2.6 × 10⁵⁸, T = 1.7 MeV $\gamma_0 = 330$

✓ LCs well reproduced ✓ E_{P-GRB} =1.9% $E_{e_{\pm}}^{tot}$ = 4.7 × 10⁵¹ erg --> under threshold

Molinari et al. 2007, A&A, 469, L13. Covino et al., arXiv:0710.0727.

Details on the LCs

X-Ray Afterglow:

... see Dainotti's talk

Molinari et al. 2007, A&A, 469, L13. Guidorzi, Vergani private communication.

The time-integrated spectrum

The power-law behavior of the GRB observed spectra can be obtained starting from thermal spectra Double integration over EQTS and observation time

Bernardini et al., 2005, ApJ, 634, L29.

The "Canonical GRB" scenario

B < 10⁻⁵ The total **P-GRB** energy is <u>larger</u> than the afterglow one. <u>"Genuine" short GRBs:</u> the P-GRB is the <u>leading</u> contribution and the afterglow is negligible

<u>"Fake" short GRBs:</u> the P-GRB <u>appears to be</u> the leading contribution since the afterglow is deflated by low CBM density (GRB 970228, GRB 060614).

<u>Normal ("long") GRBs:</u> (GRB 991216, GRB 050315..)

Bernardini et al., 2007, A&A, 474, L13. Bianco et al., 2007, AIP Conf. Proc., 966, 12.

n_{cbm} ~ 10⁻³ #/cm³ (compatible with a galactic halo environment)

10⁻⁴ < B < 10⁻² The total **P-GRB** energy is<u>smaller</u> than the afterglow one.

 $n_{cbm} \sim 1 \#/cm^3$

Conclusions

Canonical GRB" scenario:
 "Genuine" 5-GRBs <-- B < 10⁻⁵
 "Fake" 5-GRBs <-- B > 10⁻⁵, <n_{cbm} > ~ 10⁻³ #/cm³
 "Normal" L-GRBs <-- B > 10⁻⁵, <n_{cbm} > ~ 1 #/cm³

 GRB Ic and spectra successfully reproduced (see also De Barros, Caito & Dainotti talks)

 Role of the CBM density <-- possibly binary system in galactic halo