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Introduction

The relevance of the Belinski-Khalatnikov-Lifshitz (BKL) work relies on two points

1 It provided a piecewise analytical solution of the Einstein equations

2 The corresponding generic cosmological solution exhibits a chaotic behaviour.

Why believe that Universe behaviour is related to a chaotic cosmology?

1 The Standard Cosmological Model is based on the highly symmetric FRW model,
and observations agree with these assumptions.

2 A correspondence between theory and data exists even for an inflationary scenario.

The validity of the BKL regime must be settled down in pre-inflationary evolution,
although unaccessible to present observations.
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Introduction

The relevance of the Mixmaster dynamics can be identified as follows

1 The oscillatory regime can describe the
mechanism of transition to a classical cosmology.

2 The FRW model is backward unstable with respect to tensor perturbations.

3 The inflationary scenario offers an efficient isotropization mechanism, able to
reconcile the primordial inhomogeneous Mixmaster with the local high isotropy of
the sky sphere at the recombination age.

4 At Planckian scale, quantum fluctuations can be correlated at most on the causal
scale, thus we should regard
global symmetries as approximated toy models.
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The Oscillatory Regime
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Einstein Equations for a homogeneous model

Form of the 3-metric

Synchronous frame of reference, the metric is taken diagonal ds2 = dt2 − hαβdxαdxβ

hαβ = a2(t)lαlβ + b2(t)mαmβ + c2(t)nαnβ α, β, γ = 1, 2, 3

Einstein field equation for the Bianchi models'
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(λ, µ, ν) specifies the homogeneous model
for the Bianchi VIII model: (1, 1, −1)

for the Bianchi IX model: (1, 1, 1)
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BKL analysis of the Bianchi type IX model

This system of equations is not analytically integrable...

...but a piece-wise solution can be constructed!

BKL construction of the solution

Assume the potential term to be negligible
at a certain t∗

then the solution is Kasner like.

�
�

�



a ∼ t2p1 , b ∼ t2p2 , c ∼ t2p3 ,

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1

one index is always lower than 0 (say p1)

so that a(t) ∼ t4p1 →∞ as t → 0

this solution is unstable backward in time!!
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If a4 term is taken into account

↓

Bianchi type II dynamics

8><>:
a2 =

2|p1|Λ
cosh(2|p1|Λτ)

b2 = b0
2 exp [2Λ (p2 − |p1|) τ ] cosh (2|p1|Λτ)

c2 = c0
2 exp [2Λ (p3 − |p1|) τ ] cosh (2|p1|Λτ)
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BKL map [ BKL Adv. Phys 19, 525 (1970).]

The perturbation induces a transition from a Kasner epoch to another

τ →∞ :

8>>><>>>:
a ∼ exp [−Λp1τ ]

b ∼ exp [Λ (p2 + 2p1) τ ]

c ∼ exp [Λ (p3 + 2p1) τ ]

t ∼ exp [Λ (1 + 2p1) τ ]

⇒

�
�

�



a ∼ tp′l , b ∼ tp′m , c ∼ tp′n

abc = Λ′t

ANOTHER KASNER EPOCH!

BKL Map

p′l =
|p1|

1− 2|p1|
p′m = −

2|p1| − p2

1− 2|p1|
p′n =

p3 − 2|p1|
1− 2|p1|

Λ′ = (1− 2|p1|) Λ

The second Kasner epoch starts with a different negative Kasner index (say p2).

The a4 term starts decreasing, while b4 starts increasing....

...increasing up to induce a new “transition” to another Kasner epoch

Riccardo Benini and Giovanni Montani Review on the Generic Cosmological Solution Near the Singularity



The Oscillatory Regime
Cosmological Chaos

Non Classical Properties
Conclusions and Bibliography

BKL analysis of the Mixmaster
The Generic Cosmological solution
Minisuperspace Description

Piecewise solution

Kasner Epochs and Eras

u parametrization:

p1 (u) =
−u

1 + u + u2

p2 (u) =
1 + u

1 + u + u2

p3 (u) =
u (1 + u)

1 + u + u2

pl = p1(u)
pm = p2(u)
pn = p3(u)

9=;⇒
8<: p′l = p2 (u − 1)

p′m = p1 (u − 1)
p′n = p3 (u − 1)

The full u-map:

u′ = u − 1 for u > 2

u′ =
1

u − 1
for u ≤ 2
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Formulation of the Generic cosmological problem

BKL in the 70’s derived this solution and showed how its dynamics resembles the one
of Bianchi types VIII and IX.

The construction can be achieved in two steps

1 firstly considering the generic solution for the individual Kasner epoch,

2 then providing a general description of the alternation of two successive epochs.

Results

1 Generalized Kasner Solution (GKS)

2 A Replacement rule for the homogeneous indices
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Generalized Kasner solution [I.M. Khalatnikov and E.M. Lifshitz.Adv. Phys. 12, 185 (1963)]

KL in 1963 showed that the Kasner solution
can be generalized to the inhomogeneous
case and near the singularity

(
dl2 = hαβdxαdxβ

hαβ = a2lαlβ + b2mαmβ + c2nαnβ

a ∼ tpl , b ∼ tpm , c ∼ tpn�



�
	pl (x

γ) + pm(xγ) + pn(xγ) = p2
l (xγ) + p2

m(xγ) + p2
n(xγ) = 1

and the frame vectors l , m, n are now arbitrary functions of the coordinates

but this solution requires an additional condition to be stable

l · ∇ ∧ l = 0

and this make GKS not general (not enough arbitrary functions)

Total functions = 12 (9 vector components + 3 Kasner indices)

Constraints = 9

(2 Kasner relations + 3 0α eqns + 3 conditions from the

invariance under three-dimensional coordinate transforma-

tions + l · ∇ ∧ l = 0.)

Arbitrary functions = 3 A general solution possesses 4 functions
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The Generic Cosmological solution [BKL Adv. Phys 31, 639 (1982)]

Near the singularity, the matter energy-
momentum tensor in the 00- and αβ-
components may be neglected

−R0
0 =

1

2
χ̇
α
α +

1

4
χ
α
βχ

β
α = 0

−Rβα =
1

2
√

h
∂t

“√
hχβα

”
+ Pβα = 0

The GKS is obtained neglecting the three-dimensional Ricci tensor Pβα

Constraints: P l
l , Pm

m , Pn
n � t−2 , P l

l � Pm
m , Pn

n

Necessary and sufficient conditions: a
q

k/Λ� 1 , b
q

k/Λ� 1 , c
q

k/Λ� 1

1/k ∼ spatial distances over which the metric significantly changes.

As t decreases, these conditions may be violated

atr =

r
k

Λ
∼ 1
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The Generic Cosmological solution [BKL Adv. Phys 31, 639 (1982).]

Einstein Equations

−R l
l =

(ȧbc).

abc
+ λ

2 a2

2b2c2
= 0

−Rm
m =

(aḃc).

abc
− λ2 a2

2b2c2
= 0

−Rn
n =

(abċ).

abc
− λ2 a2

2b2c2
= 0

−R0
0 =

ä

a
+

b̈

b
+

c̈

c
= 0

which differ from those of the IX type only for the quantity

λ(x) =
l · ∇ ∧ l

l · [m × n]

no longer being a constant, but a function of the space coordinates.

Since this is a system of ordinary differential equations with respect to time where
space coordinates enter parametrically only such difference does not affect at all the
solution and the map.
Similarly, the law of alternation of exponents derived for homogeneous indices remains
valid in the general inhomogeneous case.
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Homogeneous Minisuperspace Models

3-Metric in vacuum hαβ = eqaδabe
a
α(x)eb

β(x)

Action for a generic homogeneous model

S =

Z
dt
`
pa∂tq

a − NH
´ H =

1
√
η

"X
a

(pa)2 −
1

2

 X
b

pb

!2

− η (3)R

#

η ≡ exp
X

a

qa

The anisotropy parameters and the 3Ricci scalar

Anisotropy parameters Qa ≡
qaP
b qb

,
3X

a=1

Qa = 1

“Potential” term
U = η

(3)R =
X

a

λ
2
aη

2Qa −
X
b 6=c

λbλcη
Qb+Qc�

�
�

Asymptotic behaviour

of the potential
U =

X
a

Θ(Qa) Θ(x) =

(
+∞, if x < 0

0, if x > 0 .
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Misner variables [C. W. Misner Phys Rev Lett22, 1071 (1969) and Phys Rev 186, 1319 (1969)]

�
�

�
�

Misner variables α, β+, β−

ηab = e2α
“
e2β
”

ab

⇔

8><>:
β11 = β+ +

√
3β−

β22 = β+ −
√

3β−

β33 = −2β+

Line Element

ds2 = N2(t)dt2 − e2α(e2β)abω
a ⊗ ωb

ω
1 =− sinhψ sinh θdφ + coshψdθ

TypeVIII ω
2 =− coshψ sinh θdφ + sinhψdθ

ω
3 = cosh θdφ + dψ

ω
1 = sinψ sin θdφ + cosψdθ

TypeIX ω
2 =− cosψ sin θdφ + sinψdθ

ω
3 = cos θdφ + dψ

Hamiltonian Formulation

δS = δ

Z “
pαα

′ + p+β+
′ + p−β−

′ − NH
”
dt = 0

H =
e−3α

24π

“
− p2

α + p2
+ + p2

− + V
”

V = −12π2e4αU(B) (β+, β−)
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Mixmaster equipotential lines in the β±-plane'

&

$

%

Bianchi type VIII

UVIII =e−8β+ + 4e−2β+ cosh(2
√

3β−)

+2e4β+

“
cosh(4

√
3β−)− 1

”

'

&

$

%

Bianchi type IX

UIX =e−8β+ − 4e−2β+ cosh(2
√

3β−)

+2e4β+

“
cosh(4

√
3β−)− 1

”

Same behaviour for large values of β when |β−| � 1

β+ −→ +∞ : U (β) ' 48β−
2e4β+ β+ −→ −∞ : U (β) ' e−8β+
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Mixmaster dynamics

The Universe evolution is described as the motion of a point-like particle in the
potential well.

The asymptotic region where the potential
terms are significant is

βwall =
α

2
−

1

8
ln(3H2)

H = const. inside the potential well ⇒ |β′wall | = 1/2

β-point moves twice as fast as the receding potential wall

the particle will collide against the wall and will be reflected from one
straight-line motion (Bianchi I) to another one.

Reflection Law�



�
	sin θf − sin θi =

1

2
sin(θi + θf )

θi is the angles of incidence and θf is the angle of reflection
This is the analogues of uf = ui − 1.
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“Stationary walls”: Misner-Chitré variables [Chitré PhD Thesis (1972)]

One set of this kind of variables is:
1 ≤ ξ <∞, 0 ≤ θ < 2π
and τ plays the role of a “radial” coordinate

�
�

�
�

8><>:
α = −eτ ξ

β+ = eτ
p
ξ2 − 1 cos θ

β− = eτ
p
ξ2 − 1 sin θ

Anisotropy parameters and the asymptotic domain

Q1 =
1

3
−

p
ξ2 − 1

3ξ

“
cos θ +

√
3 sin θ

”

Q2 =
1

3
−

p
ξ2 − 1

3ξ

“
cos θ −

√
3 sin θ

”

Q3 =
1

3
+ 2

p
ξ2 − 1

3ξ
cos θ .

1 10!
-1

0

1

2

3

4

5

"

the potential walls are static with respect to the time variable

Variational principle

S =

Z  
pξξ
′ + pθθ

′ + pττ
′ −

Ne−2τ

24D
H

!
dt

Hamiltonian

H = −pτ
2 + pξ

2
“
ξ

2 − 1
”

+
pθ

2

ξ2 − 1
+ 24Ve2τ

D = exp {−3ξeτ} is the determinant of the 3-metric.
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Cosmological Chaos
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The Gauss Map [BKL and JD Barrow Phys Rev Lett 46, 963 (1981)]

Continuous fraction

• Every s-th era is described by: u
(s)
max , u

(s)
max − 1, u

(s)
max − 2, . . . , u

(s)
min.

u-decomposition: u(s) = k(s) + x(s)

initial values: k(0) + x(0)

�
�

�
�

x (0) =
1

k(1) +
1

k(2) +
1

k(3) + . . .

1 a rational number would have a finite expansion
2 periodic expansion represents quadratic irrational numbers
3 irrational numbers have infinite expansion.

Statistic distribution of the eras

k and x are not independent ⇒ they admit a stationary probability distribution

w (k, x) =
1

(k + x) (k + x + 1) ln 2

�



�
	w (u) =

1

u (u + 1) ln 2
(u = k + x)

The existence of the Gauss map was firstly demonstrated by BKL

PROPERTIES
1 positive metric- and topologic-entropy
2 weak Bernoulli properties (cannot be finitely approximated)
3 strongly mixing and ergodic
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The Invariant Measure

Discrete dynamics [Chernoff and Barrow Phys Rev Lett 50, 134 (1983)]

α = 0

β =
Σx

(x + 1 + u)

γ =
Σ(1 + u)

x + 1 + u

∂α

∂τ
= sp2(u) =

s(1 + u)

1 + u + u2

∂β

∂τ
= sp1(u) = −

su

(1 + u + u2)

∂γ

∂τ
= sp3(u) =

su

(1 + u + u2)

(u′, x′) =

(
(u − 1, x/(1 + x)) if∞ > u > 1

(1/u − 1, 1 + 1/x) if 1 > u > 0

This map is a generalization of the
Baker transformation

Properties:
dense periodic orbits, no integral of
the motion, ergodic, strongly mixing.

Associated invariant measure:

µ(u, x) =
1

ln(2)(1 + ux2)

Continuous Dynamics [Kirillov and Montani Phys Rev D 56, 6225 (1997)]

In Misner-Chitré representation ⇒ existence an asymptotic energy like constant

Statistical-mechanics point of view:
The dynamics can be described as a microcanonical ensemble

Liouville invariant measure: dµ = dξdθdφ 1
8π2

The invariant measure provides the complete equivalence between the BKL piece-wise
description and the Misner-Chitre continuous one (Artins theorem).
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Dependence of the Lyapunov exponent on the choice of the time variable

B. K. Berger Gen Rel Grav 7, 203 (1990)

Through numerical simulations, the Lyapunov exponents were evaluated along some
trajectories in the (β+, β−) plane for different choices of the time variable:

1 τ (BKL)

2 Ω (Misner)

3 λ, the “mini-superspace” one, dλ = | − p2
Ω + p2

+ + p2
−|1/2dτ�� ��The same trajectory giving zero Lyapunov exponent for τ or Ω-time, fails for λ.

Left panel:
trajectories in the
anisotropy plane (β+, 0, β−) .

Center and right panel:
solid line indicates λ vs. τ . dashed line indicates the
three positive Lyapunov exponents
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Strange Repellors [Cornish and Levin Phys.Rev.D 55, 7489 (1997) and Phys.Rev.Lett.78, 998 (1997)]

Boundary Basin Method

By exploiting techniques originally developed to study chaotic scattering,

they found a fractal structure, THE STRANGE REPELLOR .

It is the collection of all Universes periodic in (u, v)

An aperiodic one will experience a transient age of chaos if it brushes
against the repellor.

The fractal pattern was exposed in both the exact and in the discrete
Einstein equations.

It is independent of the time coordinate and the chaos reflected in the
fractal weave is unambiguous.

Three essential fallacies:

1 the case-points proceeds never reaching the singularity.

2 the “most frequent” dynamical evolution is the one in which the point enters the
corner with the velocity not parallelly oriented towards the corner’s bisecting line

3 the artificial opening up of the potential corners could be creating the fractal
nature of it.
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Covariant Lyapunov exponent [Imponente and Montani Phys.Rev.D 63, 103501 (2001)]

Adopting Misner-Chitré like variables, it is possible to demonstrate that
Lyapunov exponent is invariant under time reparametrizations

Generic-time formulation

Introduce a generic function of
the time variable

H = −
pτ

2

(dΓ/dτ)2
+ pξ

2
“
ξ

2 − 1
”

+
pθ

2

ξ2 − 1
+ 24Ve2Γ

Reduce the dynamics with the standard
ADM technique

− pτ ≡
dΓ

dτ
HADM =

dΓ

dτ

p
ε2 + 24Ve2Γ

ε
2 ≡

“
ξ

2 − 1
”

pξ
2 +

pθ
2

ξ2 − 1

Asymptotic dynamics and energy constant of motion

ADM Hamiltonian becomes (asymptotically) an integral of motion

∀{ξ, θ} ∈ ΠQ

8<:
∂HADM

∂Γ
= 0 =

∂E

∂Γ
HADM =

√
ε2 + 24 U ∼= ε = E = const.
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Covariant Lyapunov exponent [Imponente and Montani Phys.Rev.D 63, 103501 (2001)]

Billiard dynamics

The standard Jacobi method applied to Mix-
master yields the metric ds2 = E2

»
dξ2

ξ2 − 1
+
`
ξ2 − 1

´
dθ2

–
The above metric describes a constant neg-
ative curvature surface R = −2/E2

Covariant Lyapunov exponent

introduce orthonormal tetradic basis:
• v i is the geodesic field
• w i is parallely transported.

8>>>><>>>>:
v i =

 
1
E

p
ξ2 − 1 cosφ, 1

E
sinφq
ξ2−1

!

w i =

 
− 1

E

p
ξ2 − 1 sinφ, 1

E
cosφq
ξ2−1

!

Project the geodesic deviation
equation along the vector w i

the component Z satisfies

d2Z

ds2
=

Z

E 2
Z (s) = c1e

s
E + c2e

− s
E

This scalar expression is completely independent of the choice of the variables.�
�

�

Invariant Lyapunov exponent λv = sup lim

s→∞

ln
“
Z 2 +

`
dZ
ds

´2
”

2s
=

1

E
> 0
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Chaos Covariance in the Generic Solution [R.Benini and G.Montani Phys Rev D 70, 103527 (2004)]

Hamiltonian Formulation of the generic problem

Three-metric tensor describing a
generic model

hαβ = eqaδadOa
bOd

c ∂αyb
∂βy c

Hamiltonian Formulation

S =

Z
Σ×R

dtd3x
“
pa∂tq

a + Πd∂ty
d − NH − NαHα

”
H =

1
√

h

"X
a

(pa)2 −
1

2

 X
b

pb

!2

− h (3)R

#
Hα = Πa∂αya + pa∂αqa + 2pa(O−1)b

a∂αOa
b

Gauge conditions

∂ty
d = Nα∂αyd

N =

√
hP

a pa

 
Nα∂α

X
b

qb − ∂t

X
b

qb

!
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Chaos Covariance in the Generic Solution [R.Benini and G.Montani Phys Rev D 70, 103527 (2004)]

The super-momentum constraint can be explictly solved

Πb = −pa
∂qa

∂yb
− 2pa(O−1)c

a

∂Oa
c

∂yb

Structure of the Ricci scalar

U =
D

|J|2
(3)R =

X
a

λ
2
aD

2Qa +
X
b 6=c

DQb+QcO
“
∂q, (∂q)2

, y , η
”

λ
2
a ≡

X
k,j

„
Oa

b
~∇Oa

c

“
~∇y c ∧ ~∇yb

”2
«

It can be demonstrated
that�
�

�
�

→ U =
X

a

Θ(Qa)

in the limit toward the Sin-
gularity

The same analysis developed for the homogeneous case
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Homogeneous n-dimensional generalizations [P. Halpern Gen Rel Grav 35, 251 (2003)]

Halpern studied the 14 possible 4-d Lie algebra (named G0− G14).

Mixmaster generalization is recognized in G13 because it’s the only one with all
structure constants equal to 1

5-d Homogeneous
Einstein equations

2αττ =
h

(b2 − c2)2 − a4
i

d2

2βττ =
h

(a2 − c2)2 − b4
i

d2

2γττ =
h

(b2 − a2)2 − c4
i

d2

δττ = 0

αττ + βττ + γττ + δττ =

+ 2ατγτ + 2ατ δτ + 2βτγτ+

+ 2βτ δτ + 2γτ δτ

From which Kasner relations follow and so on...

What is the difference? the conditions needed to undergo a transition

1− 3p2
1 − 3p2

2 − 2p1p2 + 2p1 + 2p2 ≥ 0

and one of the following ones

3p2
1 + p2

2 + p1 − p2 − p1p2 < 0

3p2
2 + p2

1 + p2 − p1 − p1p2 < 0

3p2
1 + p2

2 − 5p1 − 5p2 + 5p1p2 + 2 < 0

1

p1

p2

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

A region where the pi ’s are all greater than zero exists!!

HOMOGENEOUS n-D MODELS ARE CHAOTIC ONLY IN 3 SPACE DIMENSIONS
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Inhomogeneous n-d models [J. Demaret et al Phys Lett B 175, 129 (1986)]

n- dimensional Einstein dynamics

(d + 1) Einstein equations (d+1)Rik = 0

The metric admits a generalized Kasner solution: hαβ = t2pa laαlaβ

Generalized Kasner relations
P

pa(xγ) =
P

p2
a (xγ) = 1

In each point, the conditions fix one point on a (d − 2)-dimensional sphere.

Stability of the solution

Each single step of the solution is stable if limt→0 t2 (d)Rb
a = 0

The only terms capable to perturb the Kasner behavior have the form t2αabc

αabc = 2pa +
X

d 6=a,b,c

pd , (a 6= b, a 6= c, b 6= d)

Two possibilities:

1 The Kasner exponents can be chosen in an open region of the Kasner sphere
defined in so as to make αabc positive for all triples a, b, c

2 The conditions αabc (xγ) > 0 ∀(x1, . . . , xd ) are in contradiction, and one
must impose extra conditions on the functions l and their derivatives.
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Inhomogeneous n-d models [J. Demaret et al Phys Lett B 175, 129 (1986)]

The answer? It depends on the number of dimensions!

It can be shown that,

for 3 ≤ d ≤ 9:
at least the smallest α, i.e. α1,d−1,d results to be always negative
and the evolution of the system to the singularity consists of an infinite number
of Kasner epochs

for d ≥ 10:
an open region exists of the (d − 2)-dimensional Kasner sphere where α1,d−1,d

takes positive values, the so-called Kasner Stability Region (KSR).
and the existence of the KSR, implies a final stable Kasner-like regime.
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Matter-Filled spaces

If we add a scalar field φ to the dynamics

2H = −p2
Ω + p2

+ + p2
− + p2

φ + V + e6ΩV(φ)

with a BKL-like analysis we obtain a metric

ds2 = dt2 −
P3

i=1 t2pi (dx i )2

p1 + p2 + p3 = 1 , p2
1 + p2

2 + p2
3 = 1− q2

φ(t) = q ln(t) + φ0.

OSCILLATORY REGIME SUPPRESSED!

The new Kasner re-
lations allows the ex-
istence of a region
where the pi ’s are all
greater than zero

1

u

p3

p2

p1

-1 -0.5 0.5 1

-0.2

0.2

0.4

0.6

0.8

1

�



�
	and a solution with pi ≥ 0 is a Kasner

epoch stable toward the singularity

[Berger Phys Rev D 61, 023508 (1999)]

Hamiltonian

ΠαβΠβα− Π2

n−1 + 1
2 ΠαΠβ+h

„
FαβFαβ

4 − R

«
= 0

A BKL-like analysis yield a BKL map

p′1 =
−p1

1+ 2
n−2

p1
, p′a =

pa+ 2
n−2

p1

1+ 2
n−2

p1

eλ′1 = eλ1 ,
eλ′aeλa

=

„
1− 2

(n − 1) p1

(n − 2) pa + np1

«

~̀′
a = ~̀

a + σa
~̀

1, σa = −2
(n − 1) p1

(n − 2) pa + np1

eλaeλ1

Vector field restores chaos in homogeneous
model in any number of dimensions!

[R.Benini, A. Kirillov, G.Montani

Class Quantum Grav 22, 1483 (2005)]
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WDW Equation in Misner variables

Adopting the canonical representa-
tion, address the WDW eqn

Ĥψ = e−3α

"
−
δ2

δα2
+

δ2

δβ2
+

+
δ2

δβ2
−

#
ψ − eαVψ = 0

Misner proposal: [C. W. Misner Phys Rev Lett22, 1071 (1969)]

Approximate energy levels in the triangular
box with those of the standard box En(α) = π

„
4

33/2

«1/2 |n|
α
,

α- dependent eigenfunctions [Imponente and Montani IJMP D 12, 977 (2003)]

Ansatz: general solution of the form ψ =
P

n Γn(α)ϕn(α, β+, β−)
Adabatic approximation: neglect ∂αφn

Γn(α) = C1
√
α sin

„
1

2

√
pn lnα

«
+ C2
√
α cos

„
1

2

√
pn lnα

«
√

pn =
q

k2
n − 1 k2

n =

„
2π

3

«3/2

|n|2 .

No quantum Universe: mean occupation number n is constant toward the singularity.

If the initial state is classical, backwards it maintains a semiclassical character.
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The Poincaré plane

Poincaré upper half-plane representation

δSΠQ
= δ

Z
dτ(pu u̇ + pv v̇ − HADM) = 0 HADM = v

q
p2

u + p2
v

The dynamics is restriced in a portion ΠQ of the
Lobatchevsky plane

Q1(u, v) = −u/d ≥ 0

Q2(u, v) = (1 + u)/d ≥ 0

Q3(u, v) = (u(u + 1) + v2)/d ≥ 0

d = 1 + u + u2 + v2

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5  0  0.5  1

v

u

The billiard has a finite measure, and has an open
region at infinity together with two points on the
absolute (0, 0) and (−1, 0).

�
�

�
�dµ =

1

π

du dv

v2

dφ

2π

Schroedinger Dynamics

If we assume a generic
order a i

∂Φ

∂τ
= ĤADMΦ =

s
−v2

∂2

∂u2
− v2−a

∂

∂v

„
va

∂

∂v

«
Φ
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WKB analysis - vs - Liouville theorem [R. Benini and G. Montani Class Quantum Grav 24, 387 (2007)]

The quantum dynamics is non local!

We assume that operators Ĥ and Ĥ2 have
same spectrum and eigenfunctions

Looking for a WKB solution of the form

Ψ(u, v ,E) =
p

r(u, v ,E)eıσ(u,v,E)/~

we obtain for r the equation

C∂u r +

s
E2

v2
− C2∂v r +

a(E2 − C2v2)− E2

v2
p

E2 − C2v2
r = 0

The Mixmaster admits an energy like
constant of motion

We can analyze it as a microcanonical
ensemble studying the continuity equation

The distribution function w̃ satisfies the
following eqn in the configuration space

∂w̃

∂u
+

s„
E

Cv

«2

− 1
∂w̃

∂v
+

E2 − 2C2v2

Cv2
p

E2 − (Cv)2
w̃ = 0

r is the distribution
function in the WKB limit

w̃ is the distribution
function in classical real

⇒
Requiring that they coincide we get a unique value for a

a = 2 ⇒

�



�
	v̂2p̂2

v → −~2 ∂

∂v

„
v2 ∂

∂v

«
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The Spectrum of the Mixmaster [R. Benini and G. Montani Class Quantum Grav 24, 387 (2007)]

Eingenvalue equation (with a = 2)"
v2 ∂

2

∂u2
+ v2 ∂

2

∂v2
+ 2v

∂

∂v
+

„
E

~

«2
#

Ψ(u, v, E) = 0 ⇒

If Ψ(u, v ,E) = ψ(u, v ,E)/v ⇒
eigenvalue problem for the
Laplace-Beltrami operator in H

∇LBψ ≡ v2

„
∂2

∂u2
+

∂2

∂v2

«
ψ = Esψ

General solution (no boundary conditions): Eigenfunctions and Spectrum

Ψ(u, v ,E) = av s−1 + bv−s +
X
n 6=0

an
Ks−1/2(2π|n|v)

√
v

e2πinu ; E2 = s(1− s)

Energy spectrum

Dirichlet boundary conditions:

Ψ(∂ΓQ) = 0
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The Spectrum of the Mixmaster [R. Benini and G. Montani Class Quantum Grav 24, 387 (2007)]

Spectrum E2/~2 = t2 + 1/4

s = 1/2 + it
with t such that Kit(2n) = 0, n ∈ N
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Conclusions

Final Considerations

The astonishing result consists of the possibility to extend the oscillatory regime
to the generic inhomogeneous case, as far as a sub-horizon geometry is concerned.

This very general dynamics does not provide only the important, but somehow
academical, proof about the existence of the singularity but it also represents the
real physical arena to implement any reliable theory of the Universe birth.

Indeed, both from a classical and from a quantum point of view, the
inhomogeneous Mixmaster offers a scenario of full generality to investigate the
viability of a theoretical conjecture

Open Issues

An important issue will be to fix the chaotic features as expectable properties of
the Universe origin, when a convincing proposal for the quantization of gravity
will acquire the proper characteristics of a Theory.

The transition to the classical limit of an expanding Universe.
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