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I. Wheeler-DeWitt and WKB

probabilistic approaches

e In canonical guantum cosmology, the wave-
function W [hij(aﬁ),dD(ac)] is defined on an
infinite-dimensional space of all possible
3-geometries and matter field configura-
tions, known as superspace: to make
the problem tractable, all but a finite num-
ber of degrees of freedom must be “frozen
out” = the resulting finite-dimensional
superspace is known as mini-superspace.

e Action for the minisuperspace homogeneus
model:

S = /dt {Pah® = N[g*’papg + U(h)]}
(1)

where

U = h'/2[W (o) -3 R] (2)



with h = |deth;;|, W(®) is the potential
energy of matter fields, and (3R is the
curvature of three-space with metric hij.

Wheeler-DeW,itt equation for the action
(1):
(V2-U)w=0 (3)

i.e. an n-dimensional Klein-Gordon equa-
tion = probability dP to find the system
in a certain configuration-space element
dS2 can be negative = difficulty to give a
physical meaning to the wave-function

Born-Hoppeneimer/WKB approximation:
the superspace variables are divided into
two classes: semiclassical (indicated by
h*, o =1,...,n —m) and quantum (in-
dicated by ¢¥, v = 1,...,m). We assume
that the quantistic variables don’t affect
the semiclassical ones = " the variables ¢”
correspond to a small subsystem of the



Universe”; the smallness of the subsys-
tem is mathematically manifested by a
small parameter X proportional to h. By
this way, the Wheeler-DeW:itt equation
(3) and the wave-function of the Universe
can be written, respectively, as:

(V3 — U — Hg) W =0 (4)

W(h,q) = A(h)e M (h,q)  (5)

In the lowest order in A, we find the
Hamilton-Jacobi equation for S:

g*% (VaS) (VgS)+U=0  (6)

in the next order the equation for the am-
plitude A :

DVAVS + AVZ2S = 0 (7)

and, finally, the equation for the
subsystem y:

o
i, = N(0) Hox (8)

where the terms of higher order in A have
been neglected. The splitting into two



class of the variables leads to introduce
two corresponding conserved currents and
the probability distribution becomes:

p(h,q,t) = po(h,t) |x(g, h(t),t)|*  (9)
The probability
dP = jdX (10)

where d2 is the surface element on the
equal-time surfaces, is positive semidefinte,
with the two subprobability normalizable
to the unity.



II. Homogeneus Bianchi Spaces and

their temporal coordinate

Because of quantum fluctuations, a quantum
Universe has to be described by a generic in-
homogeneous model; the super-Hamiltonian

in (1), expressed by the Misner variables (o, 84, 5-),
IS:

2 2 +p?
H =k l—zi: <p+ a3p >] —I—%V(ﬁ+,ﬁ_)—|—U(a)
(11)
where
U(a) = N + ﬁ0,3 : (12)
4K K

and the different Bianchi Spaces are con-
tained in the term V(84,8-). a is the scale-
factor, describing the volume of the Universe,
B4, B- are two anisotropy parameters. We
have choose to assign to the scale factor
a the role of semi-classical variables, more-
over, looking at the signature in (11), is clear



its role as time-coordinate: following the ap-
proximation previously exposed, and scaling
the lapse-function and the scale factor a, we

obtain:
.0x

i— = Hrx (13)
ot
where
H, = [—AB + wQ(T)V} (14)
2 C
= 15
() =73 (15)
and
3
K
= 16
¢ (127\/K> (16)
valid in the limit
a > = (17)



ITI. Bianchi IX Space and

small-anisotropies limit of the model

We have used the most general homogeneus
space, the Bianchi IX one, that, in the limit
of small-anisotropies, is represented by

V(By,B-) ~8(831 + B2) (18)

obtaining:

Hr = -8+ Q2N (B +62)]  (19)

and
C

2 —
Q (T)—T4/3

(20)

The Hamiltonian (19) represents a bi-dimensional
time-dependent armonic oscillator mechani-
cal system.



IV. Wave-function for the
quasi-isotropic model and its

behaviour

Through the introduction of a new kind of
operator, the exact generalized invariant,
whose eigenstates are connected with those
of the armonic oscillator time-dependent hamil-
tonian, and through the introduction of cre-
ation and distruction operators, we find

X(B:l:aT) — X—|—(5—|—7T)X—(6—7T) (21)
with:

x+(B+,T) =

1
Jian (7) < 1 ) <5i> exD
n412"*p P 2

with p any solution of a second order differ-
ential equation connected to the exact invari-
ant ,n a new quantum number due to the
introduction of the creation and distruction

(6
(22)




operators and H, the Hermite polynomials.
From (22), we obtain:

x]? o
2 2 52 52
1 B _ot _ol=
-TEH%+<§i> H%_<§—> e e 1
P P P

(23)
so that the probability density go to nullify
exponentially once the anisotropy variable 52 —
ﬁf_ + 32 goes larger:

x|? o
2 2 g2
1 _ —5 84—
o o ()| oo (7)) e

(24)
Moreover, considering the behaviour of the p
function, moving away from initial singular-
ity:

1
_2

5
p(7) o 71/2 (1 -+ 795) =0 ,1/6 (25)



we obtain:

x(8, 7| o
2 2
1 2 B B 2 —0
+1/6 "+, 1/6 "=\, 1/6

1

Wave-function shape on its fundamental state n = O.

As it's easy to be seen, the probability density is not
null only in the region in which the anisotropies
go down



V. Classical limit of the model

Splitting the S-function into two terms

S (aaﬁ-l—aﬁ—) — SO(a) + Sl (6+7ﬁ—) (27)

we find the same results; i.e., in the limit a > 1/\/K,
we obtain the equation for G4

B = Dar'2050 (3v/er'?) (28)

where J3,5 is the Bessel function of the first kind.
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Classical behaviour of anisotropies variables on respect
to the time r; D =1



