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I. Wheeler-DeWitt and WKB

probabilistic approaches

• In canonical quantum cosmology, the wave-

function Ψ
[

hij(x),Φ(x)
]

is defined on an

infinite-dimensional space of all possible

3-geometries and matter field configura-

tions, known as superspace: to make

the problem tractable, all but a finite num-

ber of degrees of freedom must be “frozen

out” ⇒ the resulting finite-dimensional

superspace is known as mini-superspace.

• Action for the minisuperspace homogeneus

model:

S =
∫

dt
{

pαḣα − N [gαβpαpβ + U(h)]
}

(1)

where

U = h1/2[W̃ (Φ) −(3) R] (2)



with h = |dethij|, W̃ (Φ) is the potential

energy of matter fields, and (3)R is the

curvature of three-space with metric hij.

• Wheeler-DeWitt equation for the action

(1):
(

∇2 − U
)

Ψ = 0 (3)

i.e. an n-dimensional Klein-Gordon equa-

tion ⇒ probability dP to find the system

in a certain configuration-space element

dΩ can be negative ⇒ difficulty to give a

physical meaning to the wave-function

• Born-Hoppeneimer/WKB approximation:

the superspace variables are divided into

two classes: semiclassical (indicated by

hα, α = 1, ..., n − m) and quantum (in-

dicated by qν, ν = 1, ..., m). We assume

that the quantistic variables don’t affect

the semiclassical ones ⇒ ”the variables qν

correspond to a small subsystem of the



Universe”; the smallness of the subsys-

tem is mathematically manifested by a

small parameter λ proportional to ~. By

this way, the Wheeler-DeWitt equation

(3) and the wave-function of the Universe

can be written, respectively, as:
(

∇2
0 − U0 − Hq

)

Ψ = 0 (4)

Ψ(h, q) = A(h)eiS(h)χ(h, q) (5)

In the lowest order in λ, we find the

Hamilton-Jacobi equation for S:

gαβ (∇αS)
(

∇βS
)

+ U = 0 (6)

in the next order the equation for the am-

plitude A :

2∇A∇S + A∇2S = 0 (7)

and, finally, the equation for the

subsystem χ:

i
∂χ

∂t
= N(t)Hqχ (8)

where the terms of higher order in λ have

been neglected. The splitting into two



class of the variables leads to introduce

two corresponding conserved currents and

the probability distribution becomes:

ρ(h, q, t) = ρ0(h, t) |χ(q, h(t), t)|2 (9)

The probability

dP = jdΣ (10)

where dΣ is the surface element on the

equal-time surfaces, is positive semidefinte,

with the two subprobability normalizable

to the unity.



II. Homogeneus Bianchi Spaces and

their temporal coordinate

Because of quantum fluctuations, a quantum

Universe has to be described by a generic in-

homogeneous model; the super-Hamiltonian

in (1), expressed by the Misner variables (α, β+, β−),

is:

H = κ



−p2
a

a
+

(

p2
+ + p2

−
)

a3



+
a

4κ
V (β+, β−)+U(a)

(11)

where

U(a) = − a

4κ
+

Λ

κ
a3 . (12)

and the different Bianchi Spaces are con-

tained in the term V (β+, β−). a is the scale-

factor, describing the volume of the Universe,

β+, β− are two anisotropy parameters. We

have choose to assign to the scale factor

a the role of semi-classical variables, more-

over, looking at the signature in (11), is clear



its role as time-coordinate: following the ap-

proximation previously exposed, and scaling

the lapse-function and the scale factor a, we

obtain:

i
∂χ

∂τ
= Hτχ (13)

where

Hτ =
[

−∆β + ω2(τ)V
]

(14)

ω2(τ) =
c

τ4/3
(15)

and

a =

(

κ

12τ
√

Λ

)
1
3

(16)

valid in the limit

a ≫ 1√
Λ

(17)



III. Bianchi IX Space and

small-anisotropies limit of the model

We have used the most general homogeneus

space, the Bianchi IX one, that, in the limit

of small-anisotropies, is represented by

V (β+, β−) ≈ 8(β2
+ + β2

−) (18)

obtaining:

Hτ =
[

−∆β + Ω2(τ)(β2
+ + β2

−)
]

(19)

and

Ω2(τ) =
C

τ4/3
(20)

The Hamiltonian (19) represents a bi-dimensional

time-dependent armonic oscillator mechani-

cal system.



IV. Wave-function for the

quasi-isotropic model and its

behaviour

Through the introduction of a new kind of

operator, the exact generalized invariant,

whose eigenstates are connected with those

of the armonic oscillator time-dependent hamil-

tonian, and through the introduction of cre-

ation and distruction operators, we find

χ(β±, τ) = χ+(β+, τ)χ−(β−, τ) (21)

with:

χ±(β±, τ) =

eiαn±(τ)

(

1

n±!2n±ρ

)
1
2

Hn

(

β±
ρ

)

exp

[

i

2

(

ρ′

ρ
+

i

ρ2

)

β2
±

]

(22)

with ρ any solution of a second order differ-

ential equation connected to the exact invari-

ant ,n a new quantum number due to the

introduction of the creation and distruction



operators and Hn the Hermite polynomials.

From (22), we obtain:

|χ|2 ∝

1

ρ2

∣
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(23)

so that the probability density go to nullify

exponentially once the anisotropy variable β2 =

β2
+ + β2

− goes larger:

|χ|2 ∝
1

ρ2
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(24)

Moreover, considering the behaviour of the ρ

function, moving away from initial singular-

ity:

ρ(τ) ∝ τ1/2



1 +
τ−

2
3

9C





1
2

τ→0→ τ1/6 (25)



we obtain:

|χ(β, τ)|2 ∝
1

τ1/6
e

β2

τ1/3
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δ(β,0)

(26)
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Wave-function shape on its fundamental state n = 0.

As it’s easy to be seen, the probability density is not

null only in the region in which the anisotropies

go down



V. Classical limit of the model

Splitting the S-function into two terms

S (a, β+, β−) = S0(a) + S1 (β+, β−) (27)

we find the same results; i.e., in the limit a ≫ 1/
√

Λ,
we obtain the equation for β±

β± = D±τ1/2J3/2

(

3
√

cτ1/3
)

(28)

where J3/2 is the Bessel function of the first kind.
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Classical behaviour of anisotropies variables on respect
to the time τ ; D± = 1


