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I. Deformed quantum mechanics

Deformed Heisenberg algebra such that:
(i) No deforms rotation and translation groups
(ii) Ordinary Lie one is recovered in a limit

[qi,pj] = iδij

√

1 ± αp2 p2 = pip
i (1)

[pi,pj] = 0

[qi,qj] = ∓iαJαij

Generators of rotation group

Jαij =
1

√

1 ± αp2

(

qipj − qjpi

)

(2)

In 3-dim:
J ∈ SU(2), [Jαi ,qj] = iǫijkqk, [Jαi ,pj] = iǫijkpk

No sign in (1) is selected at all by the
assumptions

Algebra (1) can be obtained considering:
- q as a suitably κ-deformed Newton-Wigner
position operator
- p, J as the generators of translations and
rotations of κ-Poincaré algebra



1-dim:

[q,p] = i
√

1 ± αp2 (3)

p ∈ R in the (+)-sector

p ∈ I(−1/
√
α,1/

√
α) in the (−)-sector

Representation algebra: momentum space

pψ(p) = pψ(p) (4)

qψ(p) = i
√

1 ± αp2∂pψ(p)

Hilbert spaces p, q self-adjoint operators:

F± = L2
(

R(I), dp/
√

1 ± αp2
)

(5)

Hilbert spaces unitarily inequivalent ⇒
different physical predictions

For α → 0 the ordinary one L2(R, dp) is re-

covered in both the cases



Harmonic oscillator: H = p2

2m + 1
2mω

2q2

Considering the above representation (4)

(Ĥ − E)ψ(p) = 0 (6)

Mathieu equation ⇒ ψ(p) in terms of Math-

ieu cosine and sine

Spectrum at the lowest order (
√
α/d≪ 1):

En =
ω

2
(2n+1)± ω

8
(2n2 +2n+1)

(

α

d2

)

(7)

Characteristic length scale d = 1/
√
mω

E
(−)
n corresponds to the spectrum of the

h.o. in polymer quantum mechanics

E
(+)
n spectrum of GUP ([q,p] = i(1 + βp2))



II. Deformed FRW dynamics

The FRW cosmological models

ds2 = −N2dt2 + a2
(

dr2

1 − kr2
+ r2dΩ2

)

(8)

N = N(t) is the lapse function

a = a(t) the scale factor

Isotropy: phase space of GR 2-dim

Γ = (a, pa)

Scalar constraint:

H = −2πG

3

p2a
a

− 3

8πG
ak+ a3ρ = 0 (9)

ρ = ρ(a) denotes a generic energy density

ρ ∼ 1/a4 ultra-relativistic gas

ρ ∼ 1/a5 perfect gas

ρ ∼ const cosmological constant



Extended Hamiltonian:

HE =
2πG

3
N
p2a
a

+
3

8πG
Nak−Na3ρ+λπ (10)

λ is a Lagrange multiplier

π momenta conjugate to N , i.e. it vanishes

Equations of motion:

Ṅ = {N,HE} = λ, π̇ = {π,HE} = H (11)

Primary constraint π = 0 satisfied at all times

⇒ scalar (secondary) constraint π̇ = H = 0

Dynamics of coordinate a and momenta

pa depends on the symplectic structure

If {a, pa} = 1 we obtain Friedmann equation

H2 =

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(12)



Modified symplectic geometry

Parameter α independent with respect ~

−i[q,p] =⇒ {q, p}α =

√

1 ± αp2 (13)

Deformed Poisson bracket:

{F,G}α = {F,G}{q, p}α = {F,G}
√

1 ± αp2

(14)

This is anti-symmetric, bilinear and satisfies

the Leibniz rules as well as the Jacobi identity

Time evolution of q, p with respect to H

q̇ = {q,H}α =
∂H
∂p

√

1 ± αp2 (15)

ṗ = {p,H}α = −∂H
∂q

√

1 ± αp2



FRW deformed phase space

Fundamental commutator:

{a, pa}α =
√

1 ± αp2a (16)

Equation of motion with respect to HE

ȧ = {a,HE}α =
4πG

3
N
pa

a

√

1 ± αp2a (17)

ṗa = {pa,HE}α = N

(

2πG

3

p2a
a2

− 3

8πG
k+

+3a2ρ+ a3
dρ

da

)
√

1 ± αp2a (18)

Deformed Friedmann equation

H2 =

(

8πG

3
ρ− k

a2

) [

1 ± 3α

2πG
a2
(

a2ρ− 3

8πG
k

)]

(19)



FRW flat (k = 0) model

H2
k=0 =

8πG

3
ρ

(

1 ± ρ

ρcrit

)

(20)

critical density ρcrit = (2πG/3α)ρP .

We have assumed the existence of a funda-

mental scale, i.e. ρ ≤ ρcrit

For α→ 0, ρcrit → ∞ ⇒ ordinary behavior

(−)-equation equivalent to LQC

(+)-equation equivalent to braneworlds

The (−) sign implies a bouncing cosmology,

while with the (+) one ȧ can not vanish

A (−)-braneworlds scenario appears if the extra-

dimension is time-like (open question)



III. Deformed uncertainty principle

Uncertainty principle related to (16)

∆a =
1

2

∣

∣

∣

∣

∣

∣

(

1 ± α〈pa〉2
(∆pa)2

± α

)1/2
∣

∣

∣

∣

∣

∣

(21)

For ∆pa ≫ (∆pa)⋆ ≡
√

(1 ± α〈pa〉)/α
minimal uncertainty in the scale factor

∆a0 =
√
α/2

Brane-framework, (+)-sector: ∆a0 6= 0 is

a global minimum (No physical states which

are position eigenstates exist at all)

LQC-framework, (−)-sector: ∆a0 = 0 ap-

pears for ∆pa = (∆pa)⋆ ∝ 1/
√
α, i.e. when

the deformation energy is reached



IV. Discussion and conclusions

• A unique framework which phenomeno-

logically describes both the effective Fried-

mann evolution of LQC and branewords

models is obtained by the use of a de-

formed Heisenberg algebra.

• The algebra leaves undeformed the trans-

lation group and preserves the rotational

invariance. Furthermore is related to the

κ-Poincaré one and no sign in the defor-

mation term is selected at all.

• The brane-deformed scenario is such that

a minimal uncertainty in the scale factor

appears. On the other hand, in the loop

one, we have the vanishing uncertainty

when the deformed energy is reached.


