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Motivation of the work

We study kinetic properties of γ, e�, p plasma, relevant, for example,
to GRB phenomenon.
We want to check assumptions used for the investigation of such
phenomenon: the hydrodynamical approximation, character
timescales, optical depths. For example, for GRB plasma, where are
two di¤erent viewpoints. First approach, plasma reaches thermal
equlibrium due to huge optical depth and after this, it�s expand (can
be described by hydrodynamic) reaches large Lorenz factor (Ru¤uni et
al 1999). Second possible scenario proposed by Cavallo and Rees
1978, the plasma cools down due to direct bremsstrahlung process
until the temperature becomes below mec2, and pairs disappears.
We consider the uniform and isotropic plasma.
In our recent publication 2007 we studied γ, e� plasma evolution in
the frame of kinetic approach.
Now we want to study such plasma with p loading in the frame of
kinetic Bolzmann equations.
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Parameters of the plasma

The following temperatures ranges at the thermal equilibrium

0.1 MeV . Tth . 10 MeV.

From the GRB parameters

1048 erg � E0 � 1054 erg, 106 cm � R0 � 108 cm,

one can estimate the temperature in the thermal equilibrium given by
�rst formula.

The plasma parameter
�
nr3D
��1 � 1. The plasma can be described

by 1-particles distribution functions fi (t,p).
The plasma is non-degenerate exept the upper bound of the
temperatyre region.
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The task to be solved

In this talk we consider homogenous and isotropic plasma

1
c

∂fi (ε, t)
∂t

= ∑
q
(ηqi � χqi fi ),

where �i� is the particle kind, �q� is the number of the reaction. We take
arbitrary intial data fi (ε, 0). We consider the time evolution to the steady
state.

1 We want to know is it possible to describe the GRB plasma in the
approximation of the thermal equilibrium? (Goodman 1986 proposed.)

2 Are di¤erent scenarios for the GRB proposed by Cavallo and Rees
1978 valid?

3 Is the prediction about the relaxation to the thermal equlibrium by
Pilla, Shaham 1997 true?

4 Which timescales do we have?
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Reactions rates

Textbook Berestetskii et al 1982, Swensson, 1984, Haug, 1985.

Binary interactions Radiative and pair producing variants

Møller, Bhabha Bremsstrahlung
e�1 e

�
2 ! e�01 e

�0
2 e�1 e

�
2 $ e�1 e

�
2 γ

e�1 e
�
2 !e�01 e�02 e�1 e

�
2 $e�01 e�02 γ

Single Compton Double Compton
e�γ ! e�γ0 e�γ$e�0γ0γ00
Pair production Radiative pair production
and annihilation and three photon annihilation

γγ0$e�e� γγ0$e�e�γ00

e�e�$γγ0γ00

Table: Reactions with e�
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Reactions rates

Binary interactions Radiative and pair producing variants

Coulomb scattering Bremsstrahlung
p1p2! p01p

0
2 p1p2$ p01p

0
2γ

pe� !p0e�0 pe� $p0e�0γ
Table: Reactions with protons
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Numerical Method

1 We introduced the computational grid for the phase space ε, µ, φ
(instead of p). We replaced the integrals by sums. We obtained the
set of ODE�s to solve.

2 There are several characteristic times for di¤erent processes in the
problem. The obtained system of ODE�s is sti¤. (Eigenvalues of
Jacobi matrix di¤ers signi�cantly, and the real parts of eigenvalues are
negative.) We used Gear�s method (Hall & Watt 1976) to integrate
ODE�s numerically. This high-order stable implicit method. We do
not use Monte Carlo simulations (Pilla, Shaham can reach only
kinetic equilibrim by such approach).

3 Our code is conservative for the energy. Also the method conserves
the particles number. We prefer to use, instead of distribution
functions fi , spectral energy densities

Ei (ε) =
4πε3βi (ε) fi

c3
, εi fi (p, t)drdp =

4πε3βi fi
c3

drdεi = Eidrdε.

(1)
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Two particles interactions. ep ! e 0p0

The time evolution of the distribution functions of electrons and protons
due to ep ! e 0p0 is described by

∂fe (p, t)
∂t

=
Z
dqdp0dq0wp0,q0;p,q[fe (p0, t)fp(q0, t)� fe (p, t)fp(q, t)], (2)

∂fp(q, t)
∂t

=
Z
dpdp0dq0wp0,q0;p,q[fe (p0, t)fp(q0, t)� fe (p, t)fp(q, t)], (3)

where

wp0,q0;p,q =
cδ(εe + εp � ε0e � ε0p)

(2π�h)2
δ(p+ q� p0 � q0) jM� j2

16εeεpε0eε0p
, (4)

jM� j2 = 26(π�h)2e4c3
1
2 (s

2 + u2) + (m2c2 +M2c2)(2t �m2c2 �M2c2)
t2

,

the kinematics invariants are s = (p+ q)2, t = (p� p0)2, u = (p� q0)2.
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ep ! e 0p0 details

χepe =
Z
do 0edq

β0e
β0e � β0pe0pe0e

ε02e β0e
16εeεpε0eε0p

jM� j2
c3(2π�h)2

fp(q, t),

where do 0e = dµ0edφ0e is the element of the soliod angle for outgoing
electron in the laboratory frame, ε0e (µ

0
e , φ

0
e ) is it�s energy.

Possible solution for the reaction ep ! e 0p0 is

fi (ε, t) ∝ exp
��ε+ ϕi

kT

�
, any ϕi 6= 0.
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Cuto¤ of the scattering for little angles

We have in�nite integrals at calculations of scattering charged particles
due to terms like as t2 in the denominator of jM� j2. To prevent it one
should take into account Debye screening, and disregard little angles of
scattering. Haug 1988 gives the minimal scattering angle in the center
mass system

θmin =
2�h(m+M)
mMcD

Γ
(Γ+ 1)

p
2(Γ� 1)

,

where the maximum impact parameter D is

D�2 =
4πe2ne/m
(p0c/ε01)2c2

+
4πe2np/M
(p0c/ε02)2c2

,

Γ is the invariant Lorentz factor.
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Center of mass frame

The Center mass frame de�nition is

p10 + p20 = 0,

while the Lorenz transformation for energy-momentum is (CM system
moves with V in Laboratory frame)

pi0 = pi + [(Γ� 1)(Npi )� ΓV εi ]N, i = 1, 2,

εi = Γ(εi0 +Vpi0).

Then

V =
p1 + p2
ε1 + ε2

,N =
V
V
, Γ =

1p
1� V 2

,

e10 = �e20, e010 = �e020,

abs(p10) = abs(p20) = p0 �
q

ε210 �m2 �
q

ε220 �M2.
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Then invariant t � tmin, there we can calculate invariant in CM frame
tmin = t (p0, θmin) .
We can replace t2 in the denominator of jM� j2 by the value t2 + t2min to
cuto¤ the small angles.
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Mass scaling for ep ! e 0p0

Let m, εe � M then V tp1+p2
M , Γ t 1, ε1 t (ε01 +Ve01p0),

ε01 t
�
ε01 +Ve001p0

�
, ε01 � ε1 t V (e001 � e01) p0 ∝ 1

M . βp � 1,

s = m2 +M2 + 2mM, u = m2 +M2 � 2mM,

jM� j2 ∝
1
2

�
s2 + u2

�
+
�
m2 +M2

� �
2t �m2 �M2

�
t2

∝

�
6m2 � 2t

�
M2

t2
,

ηepeω � (χE )
ep
eω ∝

Z
(ε0e � εe ) jM� j2

εeεpε0eε0p
∝
1
M.

We can calculate ηep0eω , (χE )
ep0
eω for the particle with mass M0 � m, ε

instead of M and to obtain the transformation

ηepeω t
M0

M
ηep0eω , (χE )

ep
eω t

M0

M
(χE )ep0eω .

At t ! tmin terms ∝ M�1 can be important!
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Three particles interaction. ee $ e 0e 0γ0

Calculations of emission and absorption coe¢ cients for triple interactions
we illustrate here for bremsstrahlung e1e2 $ e 01e

0
2γ
0. In in the unit of time

in the unit volume (in relativistic units �h = 1, c = 1) one has

dw = A ∏
all particles

on exit a

dp0a
(2π)3

,

where A = (2π)4δ(4)(Pf � Pi ) jM� j2
2ε1..|{z}
all input,

output particles

, and

ḟ2 =
Z dp1dp01dp

0
2dk

0

(2π)6
A
�
f 01 f

0
2 f
0
k �

1
(2π)3

f1f2

�
.

Let�s take distribution functions fi = 1
(2π)3

exp �εi+ϕi
kT , we have multipliers

proportional to exp ϕ
kT in front of the integrals.
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The calculation of emission and absorption coe¢ cients is then reduced to
the well known thermal equilibrium case by Svensson χ(ε) = χeq,
η ∝ χeqf . Such approach is justi�ed since distribution functions with
de�nite chemical potential and temperature are established before triple
interactions become important. We notice also that when ḟ2 = 0 and
ϕγ = 0, the distribution functions ful�ll the condition

f1f2 = f 01 f
0
2 f
0
k , ε1 + ε2 = ε01 + ε02 + ε0k .
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The initial energy spectrum. t = 0.

Main part of ρ = 1024 ergs cm�3 in γ, B � npMc2

ρ = 10�3.
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Dependence of energy densities from time
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Dependence of concentration from time

Aksenov et al ( ) Boltzmann equations for the pair plasma Pescara July 8�18 2008 18 / 25



Dependence of temperatures from time
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Dependence of chemical potentials from time
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Spectrum at electrons kinetic equilibrium t = 4 � 10�14 s
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Spectrum at electrons thermal equilibrium fro γ, e�

t = 5 � 10�13 s
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Spectrum at thermal equilibrium fro γ, e� t = 5 � 10�12 s
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Conclusions

1 We get two types of equilibriums in e�, γ plasma from �rst
principles. So called kinetic equilibrium with

T , ϕ 6= 0, timescale � (nσ0c)�1

due to 2 particles reactions. And also thermal equilibrium with T ,
ϕ = 0 due to detailed balance in 3 particles reactions

T , ϕ = 0, timescale � (αneσ0c)�1.

For protons we see timescale can be � M
m (nσ0c)�1 at low B.

2 The timescale for thermal equilibrium . 10�12 s is much shorter
comparing to the timescale of the expansion (& msec).

3 We used the approximation of the uniform plasma. This means the
results can be used for the real plasma the the character dimension
� (nσT) = 4 � 10�5 cm.

4 In the non degenerate case we can reduce 3-particles reaction to the
equilibrium reactions rates, because we have temperature and
chemical potential in the kinetics equilibrium.
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Future perspectives

1 Although the kinetic approch proofs the hydrodinamical approach, it
can be useful to study the set of thenomena with plasma far from the
equlibrium: the study of the decay of the critical electrical �eld or the
investigation of some compact object al low radiation. For example,
the radiation a Strange Star (R = 10 km) is non-equlibrium even for
large luminosities . 1042 ergs s�1. Such can requre to solve
nonuniform Bolzmann equations for di¤erents kinds of particles
fi (r,p, t).

2 For GRB�s plasma it is also can be interesting to consider the kinetic
approach for photons to study of spectra.
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