micromechanical proof of principle experiment

A

gravitational force of milligram masses

...on beha Markus Aspelme

we > = |big G > + ||

möle *et al.,* Int. Grav. **33** (2016) öle PhD thesis (2017)

universität wien

How do quanta gravitate

John Archibald Wheeler:

- Spacetime tells matter how to move
- Matter tells spacetime how to curve

- \rightarrow Matter wave interferometry
- \rightarrow Atom fountains

A quantum source mass?

How massive/small can we go?

Experimental setup

Noise couplings

- Direct coupling
 - Recoil
 - Gas momentum

- Electrostatic
- Environmental disturbances:
 - Seismic
 - Acoustic
 - Thermal drifts
- Readout noise
 - Shotnoise
 - Interferometer
 - Detector
- Thermal bath
 - Due to support

Force contributions ≈ sensitivity curve

Position readout: interferometer layout

- Polarization based Mach Zehnder
 - small and short beam separation (common path ifo)
 - high common mode rejection (test mass support as reference)
 - equally long arms
- Balanced homodyne detection
 - in-vacuum & suspended
- Short coherence length laser?
 - minimize scattering effects

Interferometer: first results

Interferometer: current status

Detector development

Original: didn't work

- Don't know why
- Next one (2): didn't work
- Lets say, design flaws...

Then (3): didn't work

Too integrated (complicated)

After (4): didn't work

- Less integrated, more odd behavior
 Workaround:
- Bad noise but works :o)

Now (5): work in progress

Stolen design, blame others!

Detector improvements (dark century)

tered power supply Minimizes DC noise Reduces power lines

Integrated design

- quad layer board
 - ightarrow (Almost) uninterrupted ground layer
- Onboard 24bit ADC

Detector balancing

alibration

Typically DC fringe scan

leasurement

AC (tens of Hz), shot noise limited

Challenge:

- Big dynamic range required \bullet
- Know your frequency response!

Feedback:

- Electronic: many unknowns
- Optical: more native

EOM

Test mass oscillator evolution

Recipe for low-f micro-mech. oscillators

- Waver coated with high-Q material
- SiN, SiC, SiO² on Si; AlGaAs on GaAs
 Write 2D-structure in mask
- e-beam
- 1D-etch
- deep reactive ion etch (DRIE)
 Mass-loading
- 3D-etch waver selectively release
- XeF² dry etch

Test mass oscillator pictures

Ę

Source mass motor

Design

- Long range piezo (100um)
- Mechanical amplifier (x10)
- Multiple frequencies
 - \rightarrow an-harmonic Disp.
 - \rightarrow harmonic Force

Tests

- DC range: passed
- Fatigue test: passed
- Thermal test: passed
- Frequency response: promi
- 2nd generation (UHV): TBD

Mechanical AWG

• 0-100/200Hz

New lab \rightarrow milli-G 2.0

Vacuum system

- 0.7x1.5m, Viton, diff. pumping
- 1E-8mbar
- No baking \rightarrow test UV-desorption
- Testing at manufacturer

It will suit the needs perfectly!

Summary & outlook

NBS (1982) 100 ppm 201 Moscow (1996) Los Alamos (1997) July Washington (2000) - BIPM (2001) Today Wuppertal (2002) New Zealand (2003) Huazhong (2005) - Zürich (2006) Physics ⁻ Huazhong (2009) IILA (2010) 6.673 6.672 6.674 6.675 6.676 6.671 6.677 $G/(10^{-11} \text{ kg}^{-1} \text{ m}^3 \text{ s}^{-2})$

Figure 1. Measurements of Newton's gravitational constant G have yielded conflicting results. Here, the results of torsion-balance (maroon), pendulum (blue), and beam-balance (green) experiments discussed in the text are shown, along with the location and year in which they were measured. Error bars correspond to one standard deviation; the shaded region indicates the assigned uncertainty of the value recommended by the Committee on Data for Science and Technology in 2010. (Adapted from T. J. Quinn et al., *Phys. Rev. Lett.* **111**, 101102, 2013.)

- Gravitational field of 2 mm gold sphere is detectable
 - With current technology
 - At room temperature
 - Beating current source mass record by 10³
- Two paths for the future:
 - Increase mass
 - ightarrow perform actual precision measurements of gravity
 - G
 - non-Newtonian forces
 - Decrease mass and/or go cryogenic
 - Investigate gravitational interaction of *massive quantum things* (long term)
 - Levitated nanospheres?

Levitated stuff @ Aspelmeyer labs

ſ

- Source mass and or test mass
- Eliminate dissipation arising from soft support
- Magnetically
 - + High density
 - + High mass
 - Induced fields
- Optically
 - + High Q
 - Low density
 - Low mass

Team, support & funding

ĺ

VIVERSITY VIRGINIA

Schmöle PhD thesis (2017) Schmöle et al., Class. Quant. Grav. 33 (2016)

Interferometer isolation

Thermal isolation

- Styrodur
- Huge improvement in drift

Acoustic isolation

- Computer silencing
- No obvious spectral improvement
- But you can talk now :-)

Seismic isolation

- Minus-k
- No significant improvement (ye

Vacuum

- Compatible with minus-k
- Approx. 10⁻⁴hPa

ptical lever

- Easy/fast
- Low sensitivity
- High amplitudes → nonlinear damping?
- Relies on long. \rightarrow pitch coupling
- Or have to use multiple optical levers

Limited range

Δφ

ĺ

26