

Status of KAGRA and its science goals

Takaaki Kajita,for the KAGRA collaborationInstitute for Cosmic Ray Research, Univ. of Tokyo

15th Marcel Grossmann Meeting July 4, 2018

- Introduction
- Overview of KAGRA
- Status of KAGRA
- Plan of KAGRA
- Science Goals
- Summary

Introduction

Introduction

Congratulations to LIGO and Virgo!

Now it is clear that we can do many important science with GW, if we do it right.

11.40h

1.31h

Overview of KAGRA

KAGRA collaboration

10 countries, >200 members

Location

Schematic view of KAGRA optical system

• <u>KAGRA is a huge Michelson interferometer that has optical cavities in the arms and recycling</u> systems. (Very similar to LIGO and Virgo.)

Vibration isolation system

Depending on the requirement, various types of vibration isolation are used.

Key features of KAGRA

The detector is constructed underground Kamioka.
→ Reduction of seismic noise (to approximately 1/100).

> Cryogenic mirrors to reduce the thermal noise.

→ Very high sensitivity.

Status of KAGRA

Time line (Construction and Operation)

3km x 3km arms

X arm tunnel and vacuum tubes

✓ Connection and the leak tests of 3km X 3km beam tubes have been finished in March 2015.

Y arm tunnel and vacuum tubes

Center area

Construction work going on

Office building

KAGRA control room in the office building

Cryogenic mirrors and cryostat

Cryo-payload and Sapphire mirror installation

Preparation of cryogenic mirror at the Toyama University. (22cm (diameter), 15cm (thick), 23kg) → To the KAGRA site

Installation of the first cryogenic mirror (Nov.30, 2017)

Operation of interferometer with a cryogenic mirror

Operation of interferometer with a cryogenic mirror

Cooling down a mirror

Plan of KAGRA

"Observation scenario paper"

LIGO, Virgo, KAGRA, Living Rev Relativ (2018) 21:3

21

The next stage

Spring 2019:

- Installation complete
- (commissioning will be done in parallel to the installation)

Late 2019:

- Operation of Cryogenic Dualrecycling Fabry-Perot interferometer
- (If some troubles/problems, cryogenic Fabry-Perot interferometer)

Target sensitivity

23

Frequency/Hz

Science goals

Joining the global GW network

The scientific output will be maximized by the global network.

KAGRA plans to join the worldwide network of gravitational wave detection / astronomy in late 2019 (near the end of O3 observation run of LIGO and Virgo).

Importance of multiple antennas

 Let us require at least 3 detector operation for the determination of the source direction.

Duty cycle of a single detector	70%	80%
3 detectors (LHO, LLO, Virgo)	34%	51%
4 detectors (LHO, LLO, Virgo, KAGRA)	<mark>65</mark> %	81%
5 detectors (LHO, LLO, Virgo, KAGRA, LIGO-India)	83%	94%

Adding KAGRA (and LIGO-India) has a significant impact on the 3 detector coincidence!

Importance of Global GW Network: Detector antenna patterns

KAGRA is complementary in the sensitive direction to other detectors.

Importance of Global GW Network: Sky localization

• Assuming the sensitivity of;

LIGO	Virgo	KAGRA	
205 Mpc	126 Mpc	152 Mpc	
LV: <i>LIGO-P1200087,</i> K: <i>JGW-T1707038</i>			

Also, assuming NS-NS merger
 (1.4 M_{Sun} -1.4 M_{Sun}) at 150 Mpc

Science goals of KAGRA (common goals of ground based GW detectors)

Merger of binary neutron

<u>stars</u>

➔ We want to understand the origin of the heavy metals in the Universe more accurately.?

<u>Merger of binary</u> <u>blackholes</u>

How the blackholes were created?

Supernova explosion

➔ How the heavy stars finish their life?

Summary

- KAGRA is a unique GW interferometer with the underground site and the cryogenic technology.
- KAGRA had the initial cryogenic interferometer operation in April-May 2018.
- KAGRA plans to complete the installation in the spring of 2019 and join O3 in late 2019.
- KAGRA would like to contribute to the global network of gravitational wave detectors, and contribute to the science of gravitational wave astronomy.