A smooth Exit from Eternal Inflation

arxiv:1707.0772 (JHEP 04 (2018))

w/ Stephen Hawking

MG 15

Thomas Hertog

Institute for Theoretical Physics
KU Leuven

Eternal Inflation

A mosaic of pocket universes

A smooth exit from eternal inflation?

S.W. Hawking^a and Thomas Hertog^b

^aDAMTP, CMS, Wilberforce Road, CB3 0WA Cambridge, U.K.

E-mail: S.W.Hawking@damtp.cam.ac.uk, Thomas.Hertog@kuleuven.be

ABSTRACT: The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

^bInstitute for Theoretical Physics, University of Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

PONTIFICIAE ACADEMIAE SCIENTIARYM SCRIPTA VARIA

ASTROPHYSICAL COSMOLOGY

PROCEEDINGS OF THE STUDY WEEK ON COSMOLOGY AND FUNDAMENTAL PHYSICS

September 28 - October 2, 1981

edited by

H. A. BRÜCK, G. V. COYNE and M. S. LONGAIR

EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA

MCMLXXXII

ASTROPHYSICAL COSMOLOGY	XIII
3. Star Formation in the Interstellar Medium	480
4. Galaxy Formation	482
5. Summary	486
Discussion	490
M.J. REES: Remarks on a Possible Pregalactic "Population III"	495
Discussion	499
VI. THE VERY EARLY UNIVERSE AND PARTICLE PHYSICS	
S. WEINBERG: Elementary Particle Physics in the Very Early	503
Universe	503
1. Spontaneous Symmetry Breaking	509
Baryon and Lepton Nonconservation	510
). Grand Chineation	52
4. Supersymmetry	52
Discussion	
D.W. SCIAMA: Massive Neutrinos in Cosmology and Galactic	
Astronomy	52
1. Introduction	52
2. Massive Neutrinos in Particle Physics	53.
3. Cosmological Implications of Massive Neutrinos	53
4. Neutrino Domination of Galaxy Clusters and Galaxies .	54
5. Massive Neutrinos and Ultra-Violet Astronomy	54
Discussion	55
J.E. GUNN: Some Remarks on Phase-Density Constraints on the	55
Masson	70
Discussion	
S.W. HAWKING: The Boundary Conditions of the Universe	56
Discussion	57

No-Boundary Proposal

"The boundary condition of the universe is that it has no boundary."

[Hawking, Pont. Ac. Sci.1982]

Classical singularity

No-Boundary Proposal

"The boundary condition of the universe is that it has no boundary."

[Hawking, Pont. Ac. Sci.1982]

Quantum smoothness

No-Boundary Proposal

"The boundary condition of the universe is that it has no boundary."

[Hartle and Hawking, PRD 1983]

$$\Psi_{NB}[^3g,\phi] \sim \exp\left(-I_E[^3g,\phi]/\hbar\right) \sim Ae^{iS/\hbar}$$

A measure on inflation

$$\Psi_{NB}[^3g,\phi] \sim \exp\left(-I_E[^3g,\phi]/\hbar\right) \sim Ae^{iS/\hbar}$$

"The no-boundary wave function is peaked around inflationary universes. It explains why inflation started in the first place, with perturbations initially in their ground state."

$$P_{histories} \sim A^2[^3g,\phi]$$

A Prior for Planck

$$\Psi|^2 \longrightarrow \text{relative weighting of models} \longrightarrow \text{sharp predictions}$$

Slow roll inflation

$$\Psi[\zeta] \propto \prod_{n} \exp\left(-\frac{\epsilon}{H^2}n^3\zeta_n^2\right)$$

Eternal inflation

$$\epsilon \le H^2$$

$$\Psi[\zeta] \propto \prod \exp\left(-\frac{\epsilon}{H^2}n^3\zeta_n^2\right)$$

Eternal Inflation

No Prior for Planck?

Does Ψ spread out evenly over all possible inflationary histories?

Eternal Inflation

Does Ψ spread out evenly over all possible inflationary histories?

Holography

[Horowitz & Maldacena '04; Hartle & TH '11; Anninos, Hartman, Strominger '12;..]

$$\Psi_{NB}[^3g,\phi] \longleftrightarrow Z_{QFT}[^3\tilde{g},\tilde{\phi}]$$

Can we use holography to define and evaluate the noboundary wave function in eternal inflation?

$$\Psi_{NB}[^{3}g,\phi] \sim A(^{3}g,\phi) \exp(iS[^{3}g,\phi]/\hbar)$$

$$\Psi_{NB}[^{3}g,\phi] \sim A(^{3}g,\phi) \exp(iS[^{3}g,\phi]/\hbar)$$

Ψ "connects" Euclidean AdS and Lorentzian de Sitter

$$A(^{3}g,\phi) = \exp(I_{AdS}^{reg}[^{3}\tilde{g},\tilde{\phi}]/\hbar)$$

$$Z_{QFT}[^3\tilde{g},\tilde{\phi}] \to A(^3g,\phi)$$

$$Z_{QFT}[^3\tilde{g},\tilde{\phi}] \to A(^3g,\phi)$$

The partition function specifies the amplitude of different initial geometries ³g and field configurations.

Revisit eternal inflation; dual field theory at exit eternal inflation

Toy model

Toy model

Toy model

Holographic Measure

[Bobev, TH, Vreys 2017; Anninos, Denef, Harlow 2013; Hartnoll & Kumar 2006]

Large fluctuations suppressed. No significant spreading.

A general argument

On constant density surfaces with $\ \ R(h) < 0$

one expects [Witten ('99)]
$$~Z(h)
ightarrow \infty$$

because
$$Z_{QFT}[^3 ilde{g}, ilde{\phi}]=\langle \exp\int d^3x\sqrt{ ilde{g}} ilde{\phi}\mathcal{O}
angle$$

where the action includes a conformal coupling term $R\phi^2$.

A general argument

On constant density surfaces with $\ \ R(h) < 0$

one expects [Witten ('99)]
$$~Z(h)
ightarrow \infty$$

because
$$Z_{QFT}[^3 ilde{g}, ilde{\phi}]=\langle \exp\int d^3x\sqrt{ ilde{g}} ilde{\phi}\mathcal{O}
angle$$

where the action includes a conformal coupling term $R\phi^2$.

Since

$$|\Psi_{HH}(h,\chi)| = Z_{QFT}^{-1}(\tilde{h},\tilde{\chi})$$

this means the holographic measure strongly suppresses large deformations.

A smooth exit

Holography indicates the exit from eternal inflation gives a reasonably smooth big bang

Conclusion:

- The exit from eternal inflation is the birth of a classical universe.
- A reliable theory of eternal inflation must be based on quantum cosmology and should provide a prior sharpening the predictions of slow roll inflation
- The usual account of eternal inflation gives rise to a fractal-like `multiverse' on the largest scales
- We have put forward a novel, holographic description of eternal inflation which appears to predict a smooth big bang
- Implications of holographic cosmology on observable scales?