# MG15 ROME / 1-7 JULY 2018

# DAMPE and its latest results



暗物质粒子探测卫星

FABIO GARGANO – INFN BARI

ON BEHALF OF PROF. CHANG AND THE DAMPE COLLABORATION



# The collaboration

#### • CHINA

- Purple Mountain Observatory, CAS, Nanjing
  - PI Prof. Jin Chang
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

#### • ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- GSSI Gran Sasso Science Institute
- SWITZERLAND
  - University of Geneva







# Outline

- Scientific objectives
- Instrument and construction
- Beam Test
- On-orbit performance
- ► First Results
- Present status

# The physics goals

#### High energy particle detection in space

- Study of the cosmic-ray electron and positron
- Study of cosmic ray protons and nuclei:
  - spectrum and composition
- High energy gamma-ray astronomy and photon spectra
- Search for dark matter signatures in lepton and photon spectra
- Exotica and "unexpected", e.g. GW e.m. counterpart in the FoV (1sr)

Detection of  $5 \text{ GeV} - 10 \text{ TeV e/}\gamma$  50 GeV - 100 TeV protons and nucleiExcellent energy resolution (<1.5%@100GeV e/ $\gamma$ ; < 40% @800GeV p) Very good angular resolution (<0.2° @ 100GeV  $\gamma$ )

# Instrument design

75k readout channels + temperature sensors

**PSD**: double layers of scintillating strip detector acting as ACD + PID **STK**: 6 tracking double layers + 3 mm tungsten plates. Used for particle track and photon conversion

5

**BGO**: the calorimeter made of 308 BGO bars in hodoscopic arrangement (~32 radiation lengths). Performs both energy measurements and trigger

NUD: it's complementary to the BGO by measuring the thermal neutron shower activity. Made up of boron-doped plastic scintillators



# The detector during ground tests and integration





## Comparison DAMPE AMS-02 and FERMI



|                                         | DAMPE            | AMS-02                            | Fermi LAT       |
|-----------------------------------------|------------------|-----------------------------------|-----------------|
| e/γ Energy res.@100 GeV (%)             | <1.5             | 3                                 | 10              |
| e/γ Angular res.@100 GeV (deg.)         | <0.2             | 0.3                               | 0.1             |
| e/p discrimination                      | >10 <sup>5</sup> | 10 <sup>5</sup> - 10 <sup>6</sup> | 10 <sup>3</sup> |
| Calorimeter thickness (X <sub>0</sub> ) | 32               | 17                                | 8.6             |
| Geometrical accep. (m <sup>2</sup> sr)  | 0.3              | 0.09                              | 1               |

#### Beam Test

## Beam test @ CERN

- 14days@PS, 29/10-11/11 <u>2014</u>
  - e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
  - p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
  - π-@ 3GeV/c, 10GeV/c
  - > γ @ 0.5-3GeV/c
- 8days@SPS, 12/11-19/11 2014
  - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c, 150GeV/c, 200GeV/c, 250GeV/c
  - p @ 400GeV/c (SPS primary beam)
  - > γ@3-20GeV/c
  - μ@ 150GeV/c,
- 17days@SPS, 16/3-1/4 2015
  - Lead : 66.67-88.89-166.67GeV/c
  - Argon : 30A- 40A- 75AGeV/c
  - ▶ p: 30GeV/c, 40GeV/c
- 21days@SPS, 10/6-1/7 2015
  - ▶ p @ 400GeV/c
  - e @ 20, 100, 150 GeV/c
  - γ @ 50, 75 , 150 GeV/c
  - μ @ 150 GeV /c
  - p @10, 20, 50, 100 GeV/c



# BGO Test beam results: electrons



# BGO Test beam results: ions



Z (charge)

# Protons and nuclei – Beam test

12000

10000

800

4000

200

Counts

Identifying protons and nuclei with **PSD** and **STK** 

#### Lead beam 40 GeV/n



Charge measurement is done with **STK** up to Oxygen and with PSD from protons up to Iron

Charge resolution is Z dependent and ranges from 0.2 to 0.4

10

Z (Charge Estimation of PSD)

Argon beam 40 GeV/n

Ne

О

С

6

Mg

Si

14

16

(Chang et al. Astropart.Phys. 95 (2017) 6-24)

12

Ar

# Launch on 17<sup>th</sup> Dec. 2015

14

![](_page_13_Figure_1.jpeg)

Jiuquan Satellite Launch Center, Gobi desert

# The orbit

![](_page_14_Picture_1.jpeg)

- Altitude: 500 km
- Inclination: 97.4065°
- Period: 95 minutes
- Orbit: sun-synchronous

![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_7.jpeg)

- Dec. 20: all detectors powered on, except the HV for PMTs
- Dec. 24: HV on!
- Dec. 30: stable trigger condition

# Trigger rate and data transfer

![](_page_15_Figure_1.jpeg)

- Acquisition rate up to 200Hz (60 Hz for High Energy Trigger == main trigger for physics analysis)
- Data are collected 4 times per day, each time the DAMPE satellite is passing over Chinese ground stations
- I5 GB/day transmitted to ground
  - Raw Data (ROOT format 8GB) + Slow Control + Orbit Information
- 85 GB/day reconstructed data (ROOT format)
- I 00 GB/day (35 TB/year) in total

17

#### On-orbit performance

# On orbit calibration

![](_page_17_Figure_1.jpeg)

On orbit STK alignment using "mips" (i.e. not showering particle). The alignment (done every two weeks) allows us to achieve a spatial resolution better than 40µm on central STK planes

![](_page_17_Picture_4.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_6.jpeg)

The "mip" (i.e. not showering particles) peak shift with latitude due to the geomagnetic cut-off.

![](_page_17_Figure_8.jpeg)

![](_page_18_Figure_0.jpeg)

19

48 µm

r/o

**η**≈ 1

STK

8

# On orbit performance: BGO absolute energy calibration

- Geomagnetic cut-off on cosmic ray electron spectrum provides a good spectral feature for absolute energy calibration
- Measure the low energy CRE flux with 1<L<1.14 in the energy range 8GeV < E < 100GeV</li>
- We made a direct comparison between flight data and MC (with back tracing in Earth magnetic field – IGRF12)

![](_page_19_Figure_5.jpeg)

By comparing geomagnetic cut-off on cosmic ray electron and positron fluxes measured from data and MC back tracing, we found DAMPE's absolute energy scale differ from expected by 1.25%

21

#### First Results

# The global shower shape variable $\zeta$

Lateral shower shape

sumRms = sum of the shower width of all 14BGO layers

Longitudinal shower shape

F<sub>last</sub> = ratio of the last layer energy to the total BGO energy

 $\zeta = \mathcal{F}_{\text{last}} \times (\Sigma_i RMS_i/\text{mm})^4 / (8 \times 10^6)$ 

> 90% detection efficiency with proton contamination 2 % @ < 1 TeV

![](_page_21_Figure_7.jpeg)

![](_page_21_Figure_8.jpeg)

#### e<sup>+</sup>e<sup>-</sup> spectrum

- ▶ 530 days of data
- 1.5million electrons between 25GeV and 4.6 TeV have been selected
- 3 independent analyses have been performed, using different PID(e-p separation) methods
  - Shower shape (ζ method): combine lateral and longitudinal shower shape variables to one parameter ζ
  - Principal component analysis
  - Boosted Decision Tree
- An event by event(>100GeV) comparison among different methods gives very consistent results

#### e<sup>+</sup>e<sup>-</sup> spectrum

![](_page_23_Figure_1.jpeg)

(Ambrosi et al. Nat. 552 (2017) 63-66 + CALET result)

#### Systematic and statistic errors

![](_page_23_Figure_4.jpeg)

#### Proton spectrum

#### (three independent analyses ongoing)

![](_page_24_Figure_2.jpeg)

## Helium spectrum

#### (three independent analyses ongoing)

![](_page_25_Picture_2.jpeg)

PRELIMINARY Proton cont E<sup>2.7</sup> J(E) [(GeV/n)<sup>1.7</sup> s<sup>.1</sup> m<sup>2</sup> sr<sup>-1</sup>] 10<sup>3</sup> well in agreement with previous experiments currently extending analysis to higher energies CREAM combined (2017) AMS-02 (2015) PAMELA(2006/07-2008/12) 10<sup>2</sup> PAMELA-CALO(2006/06-2010/01) DAMPE Preliminary  $10^{2}$ 10<sup>3</sup> 10<sup>-1</sup> 10<sup>4</sup> 10 Energy (GeV/n)

Data set Jan 1, 2016 – May 31, 2017 2.6 Billon events

![](_page_25_Figure_5.jpeg)

# Photons: Selection

- The main background sources are protons and electrons
  - ▶ Protons: 10<sup>5</sup> @ E > 100GeV
  - ► Electrons: 10<sup>3</sup> @ E > 100GeV
- Protons
  - Are mainly rejected using the shower profile and the onboard trigger
- ► Electrons
  - Are mainly rejected using the PSD and 1<sup>st</sup> layer of STK
  - Main problem is back scattering at high energy

![](_page_26_Figure_10.jpeg)

## Photons: Selection

![](_page_27_Figure_1.jpeg)

electron proton aamma Y [No. 32: 49.132GeV] Y [No. 40: 5.034GeV] Y [No. 61: 5.559GeV] PSD: N\_MIPs 0.5 -200 -200 0.50 0 STK ADC STK ADC STK ADC STK BOO 3.5 BGO Energy BGO Enerav BGO Energy BGO: MeV -3 BGO: MeV 2.5 BGO: MeV 2.5 (Both Log10) Both Log10) 2.5 -2 (Both Log10) 200 200 2 2 1.5 1.5 1.5 0.5 0.5 400 0.5 400 STK STK BGO BGO GLOB STK NUD ADC NUD ADC BGO 600 600 NUD ADC 200 -600 -400 -200 0 400 600 -600 -400 -200 200 400 600 ·600 -400 -200 200 400 600 PSD, BGO shower profile PSD and STK allow to and NUD allow to reach reach a rejection of **10**<sup>3</sup> a rejection > 10<sup>7</sup> for for electrons hadrons

Random Forest + Convolutional Neural Network are used for PID

# Photons: Selection

Acceptance after the selection criteria applied to reject protons and electrons

29

![](_page_28_Figure_2.jpeg)

Other PID algorithms are under study to reduce electron contamination at a level below the Extra Galactic Background emission

# Photons: First results on timing Pulsars and variability

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

#### DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

ATel #9901; Zun-Lei Xu (PMO), Micaela Caragiulo (Bari), Jin Chang (PMO), Kai-Kai Duan (PMO), Yi-Zhong Fan (PMO), Fabio Gargano (Bari), Shi-Jun Lei (PMO), Xiang Li (PMO), Yun-Feng Liang (PMO), M. Nicola Mazziotta (Bari), Zhao-Qiang Shen (PMO), Meng Su (HKU/PMO), Andrii Tykhonov (Geneva), Qiang Yuan (PMO), Stephan Zimmer (Geneva), on behalf of the DAMPE collaboration, and Bin Li (PMO) and Hai-Bin Zhao (PMO) on behalf of the CNEOST group.

> on 27 Dec 2016; 01:02 UT Credential Certification: Zun-Lei Xu (xuzl@pmo.ac.cn)

Subjects: Gamma Ray, >GeV, AGN, Blazar, Quasar

Referred to by ATel #: 9924, 10007, 10292

# DAMPE Counts map

![](_page_30_Figure_2.jpeg)

#### Present status

33

![](_page_32_Picture_1.jpeg)

Very stable count rate in the last 2 years

Counts\_LT100GeV Counts\_LT500GeV

Counts\_LT1000GeV Counts\_LT10000GeV

Counts GT10000Ge

# Conclusion

- ► The detector performance in flight are excellent
- The understanding of the detector behavior and calibration (alignments, gains, charge ID etc) is improving with the consequent improvements in reconstruction and simulation software
- The electron + positron spectrum at TeV energies has been precisely measured
  - A clear spectral break has been directly measured at ~1TeV
- Nuclei measurements are ongoing
- Photon detection capability is demonstrated but more statistics to profit the excellent energy resolution at high energy is needed
- Detector calibration with particle beams at CERN was fundamental to the success of DAMPE

#### Thanks for your attention!

![](_page_33_Picture_11.jpeg)

![](_page_33_Picture_12.jpeg)

# Backup

## All particle spectrum

![](_page_35_Figure_1.jpeg)

## All particle spectrum

![](_page_36_Figure_1.jpeg)

## The quest for dark matter

Annihilation

![](_page_37_Figure_2.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

## The quest for dark matter

![](_page_38_Figure_1.jpeg)

# Challenges

![](_page_39_Picture_1.jpeg)

#### Particle identification

 A very high rejection power is needed

#### Dynamical Range

- Requirement for calorimeter elements: MeV to TeV
- Electron & gamma-ray: GeV to few TeV

![](_page_39_Figure_7.jpeg)

# Expected performance

| 4 | - | 1 |
|---|---|---|
|   |   |   |

| Parameter                                       | Value                                              |  |
|-------------------------------------------------|----------------------------------------------------|--|
| Energy range of gamma rays/electrons            | 5GeV to 10 TeV                                     |  |
| Energy resolution (e and $\gamma$ )             | 1.5% at 800 GeV                                    |  |
| Energy range of protons/heavy nuclei            | 50 GeV to 500 TeV                                  |  |
| Energy resolution of protons                    | 40% at 800 GeV                                     |  |
| Eff. area at normal incidence ( $\gamma$ -rays) | 1100 cm <sup>2</sup> at 100 GeV                    |  |
| Geometric factor for electrons                  | $0.3 \text{ m}^2 \text{ sr above } 30 \text{ GeV}$ |  |
| Photon angular resolution                       | 0.1 degree at 100 GeV                              |  |
| Field of View                                   | 1.0 sr                                             |  |

#### Astroparticle Physics 95 (2017) 6

# Expected performance in 5 years

![](_page_41_Figure_1.jpeg)

#### **Instrument development: PSD**

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

2 layers (x , y) of 1 cm thick strips, 2.8 cm wide and 88.4 cm long

- Active area: 82 cm imes 82 cm
- Weight : ~103 kg
- Power: ~ 8.5 W

(Yu et al. Astropart.Phys. 94 (2017) 1-10)

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: PSD**

![](_page_43_Figure_1.jpeg)

A Single large-Layer 25mm 28mm 20mm Strip Type B 25mm 20mm Strip type A 20mm 40mm 20mm

Readout both ends with PMT, each uses two dynode signals (factor ~ 40) to extend the dynamic range to cover Z = 1,

- Strip staggered by 0.8 cm
- 41 modules each layer
- Charge resolution: 0.07@Proton

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

44

(Yu et al. Astropart.Phys. 94 (2017) 1-10)

#### **Instrument development: STK**

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

- Envelop Size: 1.12m x 1.12m x
  Detection area: 76 cm x 76 cm 25.2 cm
- Total weight: ~154 Kg
- Total power consumption: ~ 82W

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: BGO**

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

- Outer envelop: 1 m x 1 m x 50 cm
- Detection area: 60 cm x 60 cm
- Total weight: ~1052 Kg
- Total power consumption: ~ 41.6 W

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: BGO**

![](_page_46_Picture_1.jpeg)

- 14 layers of 22 BGO crystals
  - Dimension of BGO bar:
    - $2.5 \text{ cm} \times 2.5 \text{ cm} \times 60 \text{ cm}$
  - Hodoscopic stacking alternating orthogonal layers
  - r.l: ~32X<sub>0,</sub> NIL: 1.6
- 2 PMTs coupled with each BGO bar in two ends
- Electronics boards attached to each side

![](_page_46_Picture_9.jpeg)

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: NUD**

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

- Active area: 61cm × 61cm
- Energy range: 2-60 MeV for single detector
- Energy resolution: ≤10% at 30 MeV
- Power: 0.5 W
- Mass: 12 Kg

$$n + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$$

15

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: NUD**

![](_page_48_Picture_1.jpeg)

4 large area boron-doped plastic scintillators ( $30 \text{ cm} \times 30 \text{ cm} \times 1 \text{ cm}$ )

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

#### **Instrument development: STK**

![](_page_49_Picture_1.jpeg)

# Trigger rate

![](_page_50_Picture_1.jpeg)

<u>Աստեսին հակակակական</u>

Date

![](_page_50_Figure_2.jpeg)

- HET trigger rate 20 60 Hz
- Events in South Atlantic Anomaly are not used for analysis
- variation with temperature
- ~13 ACD (0.04 MIP) in full temperature range

# On orbit calibration: STK

![](_page_51_Figure_1.jpeg)

- On orbit STK alignment using "mips" (i.e. not showering particles).
- The alignment (done every two weeks) allows us to achieve a spatial resolution better than 40µm on central STK planes

![](_page_51_Figure_4.jpeg)

52

A.Tykhonov et al. - NIMA - Volume 893, 43-56

# On orbit calibration: BGO

![](_page_52_Figure_1.jpeg)

Vertical rigidity cut-off

The "mip" (i.e. not showering particles) peak changes with latitude due to the geomagnetic cut-off.

![](_page_52_Figure_4.jpeg)

# On orbit performance: PSD

![](_page_53_Figure_1.jpeg)

# On orbit performance: STK

![](_page_54_Picture_1.jpeg)

![](_page_54_Figure_2.jpeg)

# STK Charge sharing reconstruction: Correction for hit position and angle

![](_page_54_Figure_4.jpeg)

![](_page_54_Figure_5.jpeg)

The global shower shape variable  $\zeta$ Electrons have narrower and short showers

- Lateral shower shape
  - sumRms = sum of the shower width of all 14BGO layers
- Longitudinal shower shape
  - F<sub>last</sub> = ratio of the last layer energy to the total BGO energy

![](_page_55_Figure_5.jpeg)

#### Electron identification

![](_page_56_Figure_1.jpeg)

# The global shower shape variable $\zeta$

58

> 90% detection efficiency with proton contamination 5% (2TeV) and 10 % (> 5 TeV)

![](_page_57_Figure_2.jpeg)

#### 5 TeV Electron

![](_page_58_Picture_1.jpeg)

| Z-X View                                                                                                                                                                                                                                                           | Z-Y View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                    | 10 6<br>53 3 2<br>202<br>10 0<br>10 7 + 105<br>10 7 |
| << First < Previous 52                                                                                                                                                                                                                                             | 25 Next > Last >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Colors:  01  02  03  04    Stereo Effects:  Red Cyan  Red Blue    Advanced Show:  Show Trajectory  Start                                                                                                                                                           | 05 06 07 08<br>Active Passive No Stereo<br>Animation Continuous Animation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| File Name(s):<br>electron_above500GeV.root<br>Event Number:<br>525<br>Time Point:<br>09:06:04.660, 27/04/2016<br>Total Energy:<br>4731.992000 GeV<br>Track Status:<br>Has BGO Track: Yes. Has Global Track: Yes.<br>Direction:<br>Theta: 29.3 deg, Phi: -103.4 deg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Validation of the electron $\zeta$ distribution

- Compare the z distribution of electron MC to data after subtracting the proton background
  - Very good agreement in general
  - Small energy-dependent difference : -1.9% at 25 GeV to 8.4% at 2 TeV
    - Confirmed with 243 GeV electron CERN test beam data
  - MC efficiency is corrected for this difference
    - Half of the difference is taken as systematics

![](_page_59_Figure_7.jpeg)

#### Validation of the proton ζ distribution

- Validation with 400 GeV protons data taken at the CERN SPS
  - Two MC hadronic models are compared: QGSP and FTFP
  - Data-MC have good agreement (within statistics)
  - Two hadronic models have similar distributions

![](_page_60_Figure_5.jpeg)

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018

Prof. Chang

#### Validating e/p separation with γ-rays

![](_page_61_Figure_2.jpeg)

#### NUD performance on e/p separation

![](_page_62_Figure_1.jpeg)

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

## Electrons: performances

![](_page_63_Picture_1.jpeg)

Acceptance for electrons and positrons

![](_page_63_Figure_3.jpeg)

#### $0.3m^2$ sr for E > 100GeV

Energy resolution for E.M. showers

![](_page_63_Figure_6.jpeg)

1% for E > 100GeV

## All e: Systematic errors

![](_page_64_Figure_1.jpeg)

#### Proton analysis

![](_page_65_Figure_1.jpeg)

![](_page_65_Figure_2.jpeg)

![](_page_65_Figure_3.jpeg)

## Helium analysis

![](_page_66_Figure_1.jpeg)

![](_page_66_Figure_2.jpeg)

![](_page_66_Figure_3.jpeg)

![](_page_66_Figure_4.jpeg)

# FERMI Counts map

![](_page_67_Picture_1.jpeg)

![](_page_67_Figure_2.jpeg)

#### **Detector status**

![](_page_68_Figure_1.jpeg)

AMS DAYS at LA PALMA, SPAIN 9-13 April 2018 Prof. Chang

# Count rate

![](_page_69_Figure_1.jpeg)

![](_page_69_Figure_2.jpeg)

#### Very stable count rate in the last 2 years