Neutron Star Mergers, Gravitaional Waves Gamma-Ray Bursts and the origin of Gold Tsvi Piran The Hebrew University David Eichler, Mario Livio, David Schramm, Doron Grossmam, Stephan Rosswog, Oleg Korobkin, Ehud Nakar, li_CORE David Wanderman Ben MargalitKenta Hoteokezaka erc

The Hubble Space Telescope June 13th 2013

The Hubble Space Telescope June 13th 2013

Is this the "smoking gun" proving the origin of Gold (and other heavy elemets) in the Universe? Does this assures us the identification of EM counterparts to gravitational wave sources?

Outline

- 1. Gravitational Waves
- 2. Gamma-Ray Bursts
- 3. The Li-Paczynski Macronova (kilonova)
- 4. Nucleosynthesis
- 5. Putting it all togather GRB 130603B
- 6. The origin of Gold
- 7. Confirmations: GRB 060614; Radio Flares; Plutonium

LIGO Virgo and KAGRA

LIGO Virgo and KAGRA

The Gravitaitional Waves Challenge

Nissanke + 13

Kochaneck +TP 93: need an EM counterpart

2. Gamma – Ray Bursts (GRBs)

2. Gamma – Ray Bursts (GRBs)

Once or twice a day we see a burst of low energy gamma-rays lasting for a few seconds.

2. Gamma – Ray Bursts (GRBs)

Once or twice a day we see a burst of low energy gamma-rays lasting for a few seconds.

The energy released during a burst (~10⁵¹ erg within a few seconds) is only a few orders of magnitude below the energy released by the rest of the Universe at the same time!

The late 80ies

 GRBs from magnetic flares on galactic neutron stars (E~10⁴⁰ ergs).

 All nucleosynthesis takes place in Supernovae

Two provocative ideas

LETTERS TO NATURE

Nucleosynthesis, neutrino bursts and γ -rays from coalescing neutron stars

David Eichler*, Mario Livio†, Tsvi Piran‡ & David N. Schramm§

NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors¹. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant². However, the rate of these neutron-star collisions is highly uncertain³. Here we note that such events should also synthesize neutronrich heavy elements, thought to be formed by rapid neutron capture (the r-process)⁴. Furthermore, these collisions should produce neutrino bursts⁵ and resultant bursts of γ -rays; the latter should comprise a subclass of observable γ -ray bursts. We argue that observed r-process abundances and y-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

1988

2015

GREE fr/m magnetic flares on gal/ctic neutron stars (E~10⁴⁰ ergs).

All nucleosynthesis takes hace in Sup rn vae GRBs are cosmological

Supernovae cannot produce A>130

Eichler, Livio, TP, Schramm, 88

MacFadyen & Woosley, 98

NS mergers

Collapsars

Indirect Evidence

Direct Evidence

GRBs are beamed - only 1:10 chance of detection

Orphan afterglow is too weak to

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{50}-10^{51}$ ergs

Stephan Rosswog

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{50}-10^{51}$ ergs

Stephan Rosswog

3. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilonova

3. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektanova

3. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektano a Decanova

Radioactive Decay Korobkin + 13; Rosswog, Korobkin + 13

 After a second dE/dt < t^{-1.3} (Freiburghaus+ 1999; Korobkin + 2013)

Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

time

Macronova

Photons escape from this region

The light curve depends on

- 1. mass
- 2. velocity
- 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

time

Macronova

Bolometric light curves

How are these elements produces?

r (rapid) Process

Neutron capture faster than beta decay.
High neutron densities.
Time scales – seconds.
On the neutron rich side of nuclear stability.
Uniform final abundances.

Decay of neutron star matter

Neutron Star Mergers

Korobkin + 13

Decay of neutron star matter

Neutron Star Mergers

Korobkin + 13

5. Putting it all together Gamma-Ray Burst (GRB) 130603B

GRB 130603B Z=0.356 <=> 1 Gpc = 3 Glyr

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

Macronova?

Tanvir + 13, Berger + 13

6. The Origin of GOLD

If correct

Confirmation of the GRB neutron star merger model (Eichler, Livio, TP & Schramm 1989).

Confirmation of the Li-Paczynski Macronova (Li-Paczynski 1997).

Confirmation that compact binary mergers are the source of heavy (A>130) r-process material: Gold, Silver, Platinum, Plotonium, Uranium etc...(Lattimer & Schramm, 75).

Confirmations

The GRB060614 Macronoaa
– BH–NS?

Radioactive elements - ²⁴⁴Pu
 Radio Flares

GRB 060614

Need M~0.1M. => BH-NS ?

Yang et al., Nature Comm 2015

10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 Galactic NS² 100 10 Short GRBs Advanced (5yr) 0.1 0.0001 0.01 0.001 0.1 M_{ei} [M_{sun}]

Can we break the yield - rate degeneracy?

R(z=0) [Myr⁻¹]

10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 Galactic NS² 100 10 Short GRBs Advanced (5yr) 0.1 0.0001 0.01 0.001 0.1 M_{ei} [M_{sun}]

Can we break the yield - rate degeneracy?

R(z=0) [Myr⁻¹]

R(z=0) [Myr⁻¹]

Can we break the yield - rate degeneracy?

×

Radioactive Elements

Frequent events

Rare Events

²⁴⁴Pu (half life 81Myr)

The early solar system

Wallner + 14

Rare and "massive" events

R₀ [Myr⁻¹]

Implication to GW detection

Rate of GW detection with 200 Mpc horizon is < 30 yr⁻¹.

Mass ejection is significant hence a good chance for detection of a Macronova or a Radio Flare.

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

Supernova -> Supernova remnant Macronova -> Radio Flare

Nakar, TP 2011; TP+13; Hotokezata + TP, 15

NS², 1.4GHz, D=200Mpc, n=0.1cm⁻³

BHNS, 1.4GHz, D=300Mpc, n=0.1cm⁻³

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Detectability of Radio Flares

(Hotokezaka, Nissanke + 15)

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej} and short time delay).

A radio flare may confirm this!

- A second Macronova suggests a BH-NS merger
- Plutonium abundance (from deposition now and from early solar system suggests that R-process production is in rare events.

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej} and short time delay).

A radio flare may confirm this!

- A second Macronova suggests a BH-NS merger
- Plutonium abundance (from deposition now and from early solar system suggests that R-process production is in rare events.

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej} and short time delay).

A radio flare may confirm this!

- A second Macronova suggests a BH-NS merger
- Plutonium abundance (from deposition now and from early solar system suggests that R-process production is in rare events.

