Gravitational origin of the Pioneer Anomaly in metric theories of gravitation: can it be done without destruction of coherence between the theory and experiment in gravitational physics?

I. A. Siutsou

ICRA, "La Sapienza", Roma and ICRANet, Pescara

XII Marcel Grossman meeting
12–18 July 2009
Introduction
The Pioneer Anomaly
Our objective

Space-time determination from radial and circular motions
Motion in arbitrary coordinates
Coordinate choice and space-time determination

The Pioneer Anomaly, its source in GR and light deflection
The Pioneer Anomaly
Metric perturbation
Metric origin in GR
Light deflection

Conclusions and future prospects
The Pioneer anomaly

- Pioneer 10/11, Galileo, Uliss in outer Solar system.
- Surprisingly «unmodelled» acceleration was found.
- The acceleration is the same for all spaceships and independent on radius.
- Its value is defined most accurately for Pioneer 10
 \[a_P = 8.74 \pm 1.33 \times 10^{-10} \text{ m/s}^2. \]
- One of the very few experiments in the celestial mechanics non-consistent with General Relativity
- The same value of accelerations suggests metric origin of them.
- At the same time there are no signatures of such an acceleration in the orbits of outer planets and asteroids (L. Iorio et. al., 2007, 2008; K. Tangen, 2007).
Goal

Determination of the space-time, radial motion in which shows Pioneer anomaly without affecting circular orbits.

This possibility follows from the existence of two metric functions in the spherically-symmetric static space-time. Usually only one of them is used, because only change in time component of metric corresponds to Newtonian limit for slowly moving bodies, e. g. planets.
Goal

Determination of the space-time, radial motion in which shows Pioneer anomaly without affecting circular orbits.

This possibility follows from the existence of two metric functions in the spherically-symmetric static space-time. Usually only one of them is used, because only change in time component of metric corresponds to Newtonian limit for slowly moving bodies, e. g. planets.
Spherically-symmetric static space-time — Radial motion

Interval in the general coordinates

\[ds^2 = e^{\tau(r)} dt^2 - e^{\rho(r)} dr^2 - e^{\sigma(r)} r^2 (d\theta^2 + \cos^2 \theta d\phi^2). \]

(1)

Radial motion can be obtained from the energy

\[g_{tt} \frac{dt}{ds} = e^{\tau(r)} u^0 = k = \text{const} \]

and 4-velocity length conservation

\[e^{\tau(r)} u^0 u^0 - e^{\rho(r)} u^1 u^1 = \varepsilon, \quad \varepsilon = 0 \text{ or } 1: \]

\[\frac{dt}{dr} = \frac{e^{\frac{\rho(r) - \tau(r)}{2}}}{\sqrt{1 - \varepsilon e^{\tau(r)} / k^2}}. \]

(2)
The universal formula for Doppler shift in the geometric optics approximation

\[
\frac{\nu_r}{\nu_e} = \frac{s_e}{s_r} = \frac{\vec{u}_r \cdot \vec{k}_r}{\vec{u}_e \cdot \vec{k}_e},
\]

(3)

\(\nu_r\) and \(\nu_e\) — received and emitted frequencies, measured by the standard observers with atomic clocks,
\(s_r\) and \(s_e\) — proper time of one circle of oscillation,
\(u_r\) and \(u_e\) — 4-velocity of receiver and emitter,
\(k_r\) and \(k_e\) — tangential null vector (wave vector), paralelly transported along the path of signal.
Radial motion in Doppler tracking

The signal is emitted from the «fixed» Earth from \(r = r_0 \), and received on the spaceship, then retranslated to Earth. The finally received on Earth frequency \(\nu_r \) is connected to the initially emitted \(\nu_e \) as

\[
\nu_r = \nu_e \frac{1 - \sqrt{1 - e^{\tau(r)}/k^2}}{1 + \sqrt{1 - e^{\tau(r)}/k^2}} \quad \text{no } e^{\rho(r)} \text{ dependence!} \quad (4)
\]

Red shift: \(z(t) = \frac{\Delta \nu}{\nu} = \frac{2}{1 + 1/\sqrt{1 - e^{\tau(r(t))/k^2}}, \quad (5)}
\]

\[
e^{\tau(r(t))} = k^2 \left[1 - \left(\frac{z(t)}{2 - z(t)} \right)^2 \right]. \quad (6)
\]

We can determine \(e^{\tau(r(t))} \), but we don’t know \(r(t) \).
There is a gauge alternative: prescribe \(r(t) \) or \(e^{\rho(r)} \).
Circular motion and radial motion, light propagation time

For the circular motion $\theta = 0$, $\phi = \omega t$ and

$$\omega^2(r) = \frac{(e^{\tau(r)})'}{(r^2 e^{\sigma(r)})'}.$$ \hfill (7)

Radial motion

$$\frac{dt}{dr} = e^{\frac{\rho(r)-\tau(r)}{2}} \frac{e^{\frac{\rho(r)-\tau(r)}{2}}}{\sqrt{1 - \varepsilon e^{\tau(r)}/k^2}}.$$ \hfill (8)

One-way light propagation time

$$t_p = \int_{r_0}^{r} e^{\frac{\rho(r)-\tau(r)}{2}} dr.$$ \hfill (9)

The maximal simplification suggests null coordinates $\tau(r) \equiv \rho(r)$.
Circular motion and radial motion, light propagation time

For the circular motion $\theta = 0, \phi = \omega t$ and

$$\omega^2(r) = \frac{(e^{\tau(r)})'}{(r^2 e^\sigma(r))'}.$$ \hspace{1cm} (7)

Radial motion

$$\frac{dt}{dr} = \frac{e^{\frac{\rho(r) - \tau(r)}{2}}}{\sqrt{1 - \varepsilon e^{\tau(r)}/k^2}}.$$ \hspace{1cm} (8)

One-way light propagation time

$$t_p = \int_{r_0}^{r} e^{\frac{\rho(r) - \tau(r)}{2}} dr$$ \hspace{1cm} (9)

The maximal simplification suggests null coordinates $\tau(r) \equiv \rho(r)$.
Space-time determination in null coordinates

\[t_p = r - r_0 \quad \Rightarrow \quad t = \frac{t_r + t_e}{2}, \quad r = r_0 + \frac{t_r - t_e}{2}, \quad (10) \]

\[\frac{dt}{dr} = \frac{1}{\sqrt{1 - \varepsilon e^{\tau(r)}/k^2}} \quad \Rightarrow \quad k^2 = \frac{1}{1 - v^2} \quad (11) \]

\[e^{\tau(r(t))} = k^2 \left[1 - \left(\frac{z(t)}{2 - z(t)} \right)^2 \right], \quad (12) \]

\[\omega^2 = \frac{(e^{\tau(r)})'}{(r^2 e^{\sigma(r)})'} \quad \Rightarrow \]

\[r^2 e^{\sigma(r)} = r_0^2 e^{\sigma(r_0)} - \int_{r_0}^{r} \frac{4k^2 z(r)z'(r)}{(2 - z(r))^3 \omega^2(r)} \, dr. \quad (13) \]
The Pioneer Anomaly

\[
\frac{d}{d^{ET}}(\nu_r - \nu_m) = -\nu_e \frac{2a_P}{c}, \quad (14)
\]

\(\nu_m\) — "modelled" frequency taking into account all known sources of frequency shifts

\(a_P\) — anomalous acceleration

Basic definitions:

Circular motion is the same as in the Schwarzschild field

Radial motion differs slightly from the Schwarzschild field
Schwarzschild space-time: null coordinates and "modelled" values

\[ds^2 = \frac{W(e^{\frac{r}{r_g}} - 1)}{1 + W(e^{\frac{r}{r_g}} - 1)}(dt^2 - dr^2) - \]

\[-r_g^2 \left(1 + W(e^{\frac{r}{r_g}} - 1)\right)^2 (d\theta^2 + \cos^2 \theta d\phi^2), \quad (15) \]

\[v_m = v_0 \frac{1 + 1/W(e^{\frac{r}{r_g}} - 1)}{1 - v^2} \left(1 - \sqrt{1 - \frac{1 - v^2}{1 + 1/W(e^{\frac{r}{r_g}} - 1)}}\right)^2, \quad (16) \]

\[\left(\frac{dr}{dt}\right)_m = \sqrt{\frac{v^2 + 1/W(e^{\frac{r}{r_g}} - 1)}{1 + 1/W(e^{\frac{r}{r_g}} - 1)}}. \quad (17) \]
Determination of $\delta e^{\tau}(r)$

\[
\delta e^{\tau}(r) \simeq -\frac{z(r) \delta z(r)}{2} = a_P z(r) \Delta t(r), \tag{18}
\]

\[
t_m(r) = t(r_0) + \int_{r_0}^{r} \frac{dr}{r} \simeq \approx t_0 + \frac{r}{\sqrt{v^2 + \frac{r_g}{r}}} - \frac{r_g}{v^3} \sinh^{-1} \left(\sqrt{\frac{r}{r_g}} v\right), \tag{19}
\]

with the relative uncertainty less than 10^{-8}. For $z(r)$ with the accuracy higher than $6 \cdot 10^{-5}$

\[
z_m(r) = 2r_m = 2\sqrt{v^2 + \frac{r_g}{r}}. \tag{20}
\]
Gravitational origin of the Pioneer Anomaly

I. A. Siutsou

Introduction

The Pioneer Anomaly
Our objective

Space-time determination from radial and circular motions
Motion in arbitrary coordinates
Coordinate choice and space-time determination

The Pioneer Anomaly, its source in GR and light deflection

Metric perturbation

Metric origin in GR
Light deflection

Conclusions and future prospects

Time metric function perturbation

\[\delta e^{\tau(r)} = 2a_P \left(r + \right. \]
\[+ \frac{r_g}{v^2} \left[1 - \sqrt{1 + \frac{r_g}{r} \frac{1}{v^2} \sinh^{-1} \left(\sqrt{\frac{r}{r_g}} v \right)} \right] - \]
\[\left. \left(\frac{r_g}{r} \right) \right) \), \quad (21) \]

Non-linear perturbation, but for the precision of measurements the difference can be neglected and linear approximation of \(\delta e^{\tau(r)} \sim 2\eta a_P (r - r_0) \) will be sufficient
Graph of time metric perturbation

\[\Delta e^{\tau(r)} \times 10^{14} \]

\[\delta e^{\tau(r)} \] of the Pioneer anomaly for \(v \) from 5 km/s to 50 km/s in 5 km/s steps (from down to up) for the metric matching to Schwarzschild’s on 12 a. u.
Transversal metric perturbation

In the first approximation

$$\delta e^{\sigma(r)} = \frac{4a_P \eta r_g}{r^2} \int_{r_0}^{r} \left(1 + W\left(e^{r_g/r} - 1\right)\right)^3 \, dr =$$

$$= \frac{4a_P \eta r_g}{r^2} \int_{r_0}^{r} \left(\frac{r}{r_g}\right)^3 \, dr = \frac{4a_P \eta (r^4 - r_0^4)}{r^2 r_g}.$$

Note the gravitational radius of the source r_g in the answer. So the effect of the Pioneer Anomaly can be reproduced only by perturbations of Schwarzschild space-time and not Minkowski one, but can be obtained without the equivalence principle violation required by various authors (L. Iorio et. al., 2007, 2008; K. Tangen, 2007).
Einstein tensor

\[ds^2 = e^\tau dt^2 - e^\rho dr^2 - e^\sigma (d\theta^2 + \sin^2 \theta d\phi^2) \quad \Rightarrow \]

\[E_{ij} = \frac{e^{-\rho}}{4} \left(\lambda_t T_i \otimes T_j - \lambda_s S_i \otimes S_j - \lambda g_{ij} \right), \quad (23) \]

\[S_i = \{0, e^{\frac{\rho}{2}}, 0, 0\}, \quad T_i = \{e^{\frac{\tau}{2}}, 0, 0, 0\}, \quad -S_i S^i = T_i T^i = 1, \]

\[\lambda_t = 4e^{\rho-\sigma} + (\rho' - 2\sigma' - \tau') (\sigma' - \tau') + 2 (\tau'' - \sigma''), \]

\[\lambda_s = 4e^{\rho-\sigma} - \tau' (\sigma' - \tau') - \rho' (\sigma' + \tau') + 2 (\tau'' + \sigma'') , \]

\[\lambda = \sigma'^2 + \sigma' \tau' + \tau'^2 - \rho' (\sigma' + \tau') + 2 (\tau'' + \sigma''). \]

In the limit of \(a/r_g = \text{const} \), \(r_g \ll r \) leading terms give

\[\lambda_t = -96 \frac{a_P \eta}{r_g}, \quad \lambda_s = -32 \frac{a_P \eta}{r_g} \frac{r_0^4}{r^4}, \]

\[\lambda = 16 \frac{a_P \eta}{r_g} \left(3 - \frac{r_0^4}{r^4} \right). \quad (24) \]
Energy-momentum tensor

For \(r \rightarrow \infty \) energy-momentum tensor

\[T_{ab} = \kappa^{-1} E_{ab} \tag{25} \]

becomes that of ideal fluid

\[T_{ab} = (\rho + p) u_a u_b - p g_{ab} \tag{26} \]

with constant pressure and density

\[
\rho = \frac{e^{-\tau}}{4\kappa} \lambda \rightarrow 12 \frac{a \rho \eta}{r_g \kappa} > 0,
\]

\[
\rho = \frac{e^{-\tau}}{4\kappa} (\lambda_t - \lambda) \rightarrow -36 \frac{a \rho \eta}{r_g \kappa} < 0.
\]

The EOS is equal to the dark energy with \(w = -1/3 \).
Light deflection — refractive index

can be obtained easily in isotropic coordinates. If

\[
ds^2 = e^{T(r_i)} dt^2 - e^{R(r_i)} \left(dr_i^2 + r_i^2 (d\theta^2 + \cos^2 \theta d\varphi^2) \right),
\]

then refractive index is

\[
n(r_i) = \frac{dt}{dl} = e^{\frac{R(r_i) - T(r_i)}{2}}.
\]

or in arbitrary coordinates

\[
n(r) = \exp \left(\frac{\sigma(r) - \tau(r)}{2} - \int_r^\infty \left(e^{\frac{\rho(r) - \sigma(r)}{2}} - 1 \right) \frac{dr}{r} \right).
\]
Light deflection — declination angle

0-th approximation: \(r \cos \phi = b \).

Total declination angle is

\[
\Delta \alpha = - \int_{\phi_0}^{\phi} (\ln n)'_r \frac{b}{\cos \phi} d\phi = \int_{\phi_0}^{\phi} \left(\frac{r(\tau'(r) - \sigma'(r))}{2} + 1 - e^{\frac{\rho(r) - \sigma(r)}{2}} \right) d\phi = \int_{\phi_0}^{\phi} \frac{b(T'(r_i) - R'(r_i))}{2 \cos \phi} d\phi. \quad (30)
\]

\[
\delta \Delta \alpha = \int_{\phi_0}^{\phi} \left(\frac{r(\delta \tau'(r) - \delta \sigma'(r))}{2} - \frac{\delta \rho(r) - \delta \sigma(r)}{2} \right) d\phi. \quad (31)
\]
Light deflection — perturbation

\[\delta \Delta \alpha = \frac{2 \eta a_P}{r_g} b l = 0 \div 6'' \]

(32)

\(l \) is the distance traveled by the light ray in the perturbed field — at least 70 a. u.,
\(b \) is the impact parameter
\(b_{max} = 1 \) a.u.

This is too much — light deflection is confirmed to coincide with GR predictions at level of parts of milliarcsecond (Will, 2005).
Conclusion

▶ The perturbation of time metric coefficient is nearly linear in r and for the transversal coefficient is proportional to r^2. Non-linearity in $e^{\tau(r)}$ cannot be recovered from the current measurements.

▶ The model proposed must be carefully studied by the «Grand-fit» investigation (Pitjeva E. V., 2005; Standish E. M., 2008), but direct measurements from the planned missions for testing General Relativity in space are preferable.

▶ EOS of matter forming this metric in GR is that of dark energy with $w = -1/3$ and constant ρ, p at space infinity. The exact solution is known, but in a very complicated form (K.P. Stanjukovich, V.N. Mel’nikov, 1983).

▶ Light deflection in the metric is in direct contradiction with observed values. This fact strongly suggest non-gravitational origin of the Pioneer Anomaly.
Thank You for Your kindly attention.