Hawking Radiation from Black Holes of Constant Negative Curvature via Gravitational Anomalies

Petros Skamagoulis

work with E. Papantonopoulos

Department of Physics
National Technical University of Athens

MG12 Meeting, Paris
July 15, 2009
Outline

1. Introduction - Motivations

2. Hawking radiation from topological black holes
 - Topological black holes (TBHs)
 - Wave equation in the background of a TBH
 - Dimensional reduction
 - Hawking radiation

3. Hawking radiation from a TBH conformally coupled to a scalar field

4. Conclusions
Hawking radiation from the cancellation of gauge and gravitational anomalies near the event horizon

Simplification for asymptotically flat spacetimes

Motivations

1. Black holes of non-spherical topology
2. Black hole of non-spherical topology conformally coupled to a scalar field
3. Asymptotically non-flat spacetimes
Topological Black Holes (TBHs)

- **Action**

\[I = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left[R + \frac{6}{l^2} \right], \]

in asymptotically AdS\(_4\).

- **Black hole**

\[ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma^2, \]

\[f(r) = \frac{r^2}{l^2} - 1 - \frac{2\mu}{r}. \]

\(\mu > -\frac{l}{3\sqrt{3}}\) is a constant related to the mass of the black hole as

\[M = \left(\mu + l/3\sqrt{3}\right)(\tilde{g} - 1), \]

and

\[d\sigma^2 = d\theta^2 + \sinh^2 \theta d\varphi^2, \]

with \(\theta \geq 0\) and \(0 \leq \varphi < 2\pi\), is the line element of the two-dimensional manifold \(\Sigma\)

\[\Sigma = H^2/\Gamma. \]

\(\Sigma\) is a compact surface of constant negative curvature and of genus \(\tilde{g} \geq 2\).
The simplest manifold Σ is a compact surface of genus two

Fig. from [R. B. Mann, arXiv:gr-qc/9709039]

The horizons

$$f(r) = \frac{r^2}{l^2} - 1 - \frac{2\mu}{r} = 0.$$

- $-\frac{1}{3\sqrt{3}} < \mu < 0$: an inner horizon r_- and an outer horizon r_+.
- $\mu \geq 0$: one horizon r_h.

The horizons have the non-trivial topology of the manifold Σ.

Petros Skamagoulis (NTUA)
Wave Equation of a Scalar Field in the Background of a TBH

Wave equation of a massive scalar field Φ

\[
\left[-\frac{1}{f} \frac{\partial^2}{\partial t^2} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 f \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sinh \theta} \frac{\partial}{\partial \theta} \left(\sinh \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sinh^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \Phi = m^2 \Phi.
\]

- Separation of variables
- Wave modes

\[
\Phi_{\xi m} = \frac{R_\xi(t,r)}{r} P_{-\frac{1}{2} \pm i \xi}(\cosh \theta) e^{im\phi}.
\]

where

\[
m = 0, \pm 1, \pm 2, \pm 3, \ldots
\]

[N. L. Balazs and A. Voros, Phys. Rept. 143, 109 (1986)]

- $\Sigma = H^2/\Gamma$ is a compact surface of genus $\tilde{g} = 2$. Discrete spectrum. $\xi \geq 0$ takes discrete real values.

Generally for genus $\tilde{g} > 2$, there are no analytical results for the angular eigenvalues and for the angular eigenfunctions.
Consider matter given by a complex scalar field $\phi(x)$ in the background of a TBH of genus $\tilde{g} = 2$. Action

$$S = S_{\text{free}} + S_{\text{int}}.$$

- S_{int} includes a mass term, potential terms and (self-)interaction terms.
- S_{free} is the free part of the action

$$S_{\text{free}} = -\frac{1}{2} \int d^4x \sqrt{-g} \phi^* \nabla^2 \phi.$$

Partial wave decomposition

$$\phi(x) = \sum_{m=-\infty}^{+\infty} \frac{R_{\xi m}(t, r)}{r} \mathcal{Y}_\xi^m(\theta, \varphi),$$

where

$$\mathcal{Y}_\xi^m(\theta, \varphi) \equiv \left(\frac{2\pi}{\xi \tanh(\pi \xi)} \right)^{1/2} \frac{\Gamma(i\xi + \frac{1}{2})}{\Gamma(i\xi + m + \frac{1}{2})} P_{\frac{1}{2} + i\xi}(\cosh \theta) e^{im\varphi}.$$
Substitute the partial wave decomposition in S_{free}, S_{int} and use the properties of the \mathcal{Y}_m^ξ.

Transform to the tortoise coordinate

$$\frac{dr_*}{dr} = \frac{1}{f(r)}.$$

Consider a region near the outer event horizon r_H. In this region

$$r(r_*) \approx Ae^{2\kappa r_*} + r_H,$$

$$f(r(r_*)) \approx 2\kappa Ae^{2\kappa r_*}.$$

In the original coordinates

$$S = \sum_{m=-\infty}^{\infty} -\frac{1}{2} \int dt dr R^*_{\xi m} \left[-\frac{1}{f} \partial_t^2 + \partial_r (f \partial_r) \right] R_{\xi m}.$$

Physics in a region near the event horizon can be described by an infinite collection of (1+1)-dimensional free massless complex scalar fields, each propagating in a (1+1)-dimensional spacetime

$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2.$$
Hawking Radiation

- Ignore the ingoing (left-moving) modes in the region near the event horizon.
- A gravitational anomaly appears
 - [R. A. Bertlmann and E. Kohlprath, Annals Phys. 288, 137 (2001)]
 - [S. A. Fulling, Gen. Rel. Grav. 18, 609 (1986)]

\[\nabla_\mu \tilde{T}^{\mu\nu} = \frac{\epsilon^{\nu\mu}}{96\pi \sqrt{-g^{(2)}}} \partial_\mu R^{(2)}. \]

The \(\nu = t \) component is written as

\[\partial_r \left(\tilde{T}_t^r - \tilde{N}_t^r \right) = 0, \]

where

\[\tilde{N}_t^r = \frac{1}{96\pi} \left(ff'' - \frac{f'^2}{2} \right). \]

- Solution

\[\tilde{T}_t^r (r) = a_H + \tilde{N}_t^r (r) - \tilde{N}_t^r (r_H). \]

\[\tilde{T}_t^r (r_H) = 0. \]

- Therefore

\[\tilde{T}_t^r (r) = \tilde{N}_t^r (r) - \tilde{N}_t^r (r_H). \]
In the asymptotic limit $r \to \infty$

\[
\frac{\epsilon^{\nu \mu}}{96\pi \sqrt{-g(2)}} \partial_\mu R_{(2)} \to 0 ,
\]

\[
\partial_r \tilde{N}_t \to 0 ,
\]

\[
\tilde{N}_t \to -\frac{l^{-2}}{48\pi} .
\]

The energy flux at infinity is

\[
F = \tilde{T}_t(r \to \infty) - \tilde{N}_t(r \to \infty) = -\tilde{N}_t(r_H) ,
\]

which equals to

\[
F = \frac{1}{192\pi} f^{r2}(r_H) = \frac{\pi}{12} \left(\frac{\kappa}{2\pi} \right)^2 .
\]

A beam of massless blackbody radiation of temperature T moving in the positive r direction has a flux $\Phi = \frac{\pi}{12} T^2$.

The flux is equivalent to blackbody radiation with a temperature $T = \kappa/2\pi$.

Identified with the Hawking temperature of the (3+1)-dimensional TBH of genus $\tilde{g} = 2$ [L. Vanzo, Phys. Rev. D 56, 6475 (1997)].
Action \cite{Martinez2004}

\[I[g_{\mu\nu}, \Psi] = \int d^4x \sqrt{-g} \left[\frac{R + 6l^{-2}}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_\mu \Psi \partial_\nu \Psi - \frac{1}{12} R \Psi^2 - \frac{2\pi G}{3l^2} \Psi^4 \right]. \]

Black hole with scalar “hair”

\[ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 \left(d\theta^2 + \sinh^2 \theta d\phi^2 \right), \]

\[f(r) = \frac{r^2}{l^2} - \left(1 + \frac{G\mu}{r} \right)^2, \]

\[\Psi(r) = \sqrt{\frac{3}{4\pi G}} \frac{G\mu}{r + G\mu}, \quad \mu > -l/4G. \]
Horizons

- $\mu \geq 0$

$$r_+ = \frac{l}{2} \left(1 + \sqrt{1 + \frac{4G\mu}{l}} \right).$$

- $-\frac{l}{4} < G\mu < 0$

$$r_- = \frac{l}{2} \left(-1 + \sqrt{1 - \frac{4G\mu}{l}} \right),$$

$$r_-- = \frac{l}{2} \left(1 - \sqrt{1 + \frac{4G\mu}{l}} \right),$$

$$r_+ = \frac{l}{2} \left(1 + \sqrt{1 + \frac{4G\mu}{l}} \right).$$

r_-- and r_+ are event horizons, while $0 < r_-- < -G\mu < r_- < l/2 < r_+$.
Consider a scalar field $\phi(x)$ in the background of the MTZ black hole of genus $\tilde{g} = 2$

$$S = -\frac{1}{2} \int d^4 x \sqrt{-g} \phi^* \nabla^2 \phi + S_{int},$$

where there is no interaction of $\phi(x)$ with $\Psi(r)$.

Perform a partial wave decomposition of ϕ in terms of the Y^m_ξ.

The dimensional reduction procedure proceeds as previously.
Hawking Radiation from the MTZ Black Hole

- Ignore the ingoing modes in the region near the event horizon.
- The $\nu = t$ component of the gravitational anomaly

$$\partial_r \left(\tilde{T}_t^r - \tilde{N}_t^r \right) = 0,$$

- Boundary condition
- In the asymptotic limit $r \to \infty$

$$\frac{e^{\nu \mu}}{96\pi \sqrt{-g_{(2)}}} \partial_\mu R_{(2)} \to 0, \quad \partial_r \tilde{N}_t^r \to 0, \quad \tilde{N}_t^r (r) \to -\frac{l^{-2}}{48\pi}.$$

- The energy flux at infinity is

$$F = \tilde{T}_t^r (r \to \infty) - \tilde{N}_t^r (r \to \infty) = -\tilde{N}_t^r (r_H),$$

$$F = \frac{1}{192\pi} f^r r^2 (r_H) = \frac{\pi}{12} \left(\frac{\kappa}{2\pi} \right)^2.$$

This form is equivalent to blackbody radiation with temperature $T = \kappa / 2\pi$. Identified with the Hawking temperature of the MTZ black hole.

Conclusions

- Modification of the covariant anomaly method for asymptotically non-flat spacetimes & application to a TBH of genus \(\tilde{g} = 2 \).
- Application to a TBH of genus \(\tilde{g} = 2 \) conformally coupled to a scalar field.
- The Hawking flux is universally determined only by the value of the gravitational anomaly on the event horizon.
- The backscattering of the Hawking radiation is ignored and its thermal spectrum is not proved.