Indirect Searches for Dark Matter in Space
Status, Results and Perspectives
from Recent and Future Experiments

Stéphane Coutu
Penn State University
12th Marcel Grossmann Meeting
Paris, France, 17 July, 2009

Outline

- Rare cosmic messengers as markers of exotic physics (dark matter)
- Antimatter: Positrons, Antiprotons, Electromagnetic: All-electrons, Gamma Rays
 - Origins, secondary vs. primary vs. exotic
 - An experimental perspective:
 - The early years (1965-1995) – 30 years
 - The recent past (1995-2005) – 10 years
 - The present (2005-now) – 4 years … accelerated development!
- Future Prospects
p, pbar, e± in Cosmic Rays

- Primary p, nuclei, e−, γ produced at CR acceleration sites (e.g., supernova shocks, PWNs);
- Secondary e± produced in equal numbers in the ISM: CR nuclei + ISM ⇒ π± → μ± → e±;
- Secondary pbars, rare nuclei also produced in the ISM;
- e± lose energy rapidly (dE/dt ∝ E^2):
 - IC scattering on interstellar photons;
 - synchrotron radiation (interstellar B field ~ few μG);
 - explains softer spectrum for electrons;
 → Very high energy electrons (and positrons) are “local” (~kpc)
- e±/(e± + e−) fraction is small (~10%);
 → substantial primary e− component.
Positrons in a Proton Stack

CR e^+ measurements are challenging:

- Flux of CR protons in the energy range 1 – 50 GeV exceeds that of positrons by a factor of approximately 5×10^3;
- Proton rejection of $\sim 10^{-5}$ is required for a positron sample with less than 5% proton contamination;
- This gets worse with energy:
 - proton rejection of 5×10^{-6} @ 50 GeV
 - 2×10^{-6} @ 100 GeV

Remember: The single largest challenge in measuring CR positrons is the discrimination against the enormous proton background! (pbar measurements are a little more forgiving)
Energy Spectra

CR e^- (and e^+) spectrum $E^{-3.3}$ much softer than proton spectrum $E^{-2.6}$.

- Proper particle ID becomes more important at higher energies to reject hadronic background;
- Spillover from tails in lower energy bins can become problematic;
- Separating electrons from positrons at high energy requires a magnetic spectrometer with sufficient maximum detectable rigidity.
Early e^+ measurements: 1965-1995

What caused the dramatic rise at high energies?
Interesting physics or ... ?

25-30% e^+ ??

Light Halo WIMPs

Leaky Box
HEAT-e± was first to employ powerful particle ID: (rigidity vs. TRD) + (rigidity vs. EM shower shape) + (Energy-momentum matching) resulting in improved hadron rejection (∼10^{-6}).
HEAT-\(e^{\pm}\) Instrument

TRD:
- dE/dx losses in MWPC
- TR only for \(e^{\pm} (\gamma > 4 \times 10^3)\)
- rejection \(\sim 3 \times 10^{-3}\)

Calorimeter:
- EM showers for \(e^{\pm}\)
- Hadronic or no showers for \(p\)
- rejection \(\sim 3 \times 10^{-3}\)

Energy - Momentum match for \(e^{\pm}\)
- rejection \(\sim 10^{-1}\)
HEAT-e± Instrument

Caution required!
Hadronic showers can occasionally mimic EM showers (early $\pi^0 \rightarrow 2\gamma \rightarrow$ EM shower)
Important: Dual techniques of particle ID allow measurement on accelerator calibration or simulation. HEAT-e± achieved a measured proton rejection of 10^-6.

Note: atmospheric corrections for local secondaries necessary at balloon altitudes...
HEAT e\(^+\) Feature

3 flights, 2 instruments, 2 geomagnetic cutoffs, 2 solar epochs; Trend consistent with secondary production at low energy but all show small excess positrons at high energy.

Structure in e\(^+\) fraction as first observed by HEAT; could be DM signature (or nearby pulsars)...

HEAT results:
PRL 75, 390 (1995);
Ap. J. Lett. 482, L191-L194 (1997);
Ap. J. 498, 779-789 (1998);
Astropart. Phys. 11, 429-435 (1999);
Ap. J. 559, 296-303 (2001);

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomagnetic cutoff rigidity</td>
<td>~ 4 GV</td>
<td>~ 1 GV</td>
<td>~ 4 GV</td>
</tr>
<tr>
<td>Solar cycle epoch</td>
<td>near minimum</td>
<td>near maximum</td>
<td></td>
</tr>
</tbody>
</table>
For $m_\chi > m_W$, $\chi\chi \rightarrow WW$ annihilation leads to peak at $\sim \frac{1}{2}M_W$ but μ, τ cascades, π decays and Galactic propagation “wash out” peak towards lower energy. e^+/e^+e^- enhancement at ~ 10 GeV (insensitive to WIMP mass!)
2005-Now: PAMELA

Originally PAMELA planned for a TRD but it could not be flown.

No atmospheric corrections needed.

Particle ID based on calorimetry.

- $S1$, $S2$, $S3$: double layers, x-y
- Plastic scintillator (8 mm)
- ToF resolution ~ 300 ps ($S1$-$S3$ ToF ≥ 3 ns)
- Lepton-hadron separation < 1 GeV/c
- $S1.32.03$ (low rate) / 32.33 (high rate)

- Permanent magnet, 0.43 T
- 21.5 cm2/gr
- 6 planes double-sided silicon strip detectors (300 μm)
- 5 μm resolution in bonding view + MDR
- ~ 300 GV (6 plane) / 500 GV (5 plane)

- 44 Si-x / W / Si-y planes (380)
- 16.3 X0 / 6.6 L
- dE/dx $\sim 5.5\%$ (10 - 300 GeV)
- Self trigger ~ 300 GeV / 600 cm2/sr

- $S6$ 3He counters
- 3He(n,p)3H, $E_n = 780$ keV
- 1 cm thick poly + Cd moderator
- ≥ 300 μs collection
PAMELA e^\pm Selection with Calorimeter

After cuts on E-R match, shower starting point

Flight data
Rigidity 20-30 GV

Test beam data
Momentum 50 GeV/c

Z = -1

e^-

Negative rigidity

Normalized number of events

Z = +1

e^+

p

Positive rigidity

Fraction of energy along the track

Fraction of energy along the track

Number of events
Selecting e^+ with PAMELA

Critical region 10-100 GV; Increasing p contribution

Neutrons detected by ND

Note: n detector efficient for $E > 100$ GeV
Comparison HEAT & PAMELA

Possible charge sign dependent solar modulation.

Rise is unexpected, and could indicate a substantial primary positron component.

In the region of interest PAMELA and HEAT are completely consistent with each other.
Fitting PAMELA with Dark Matter

Grajek et al. PRD 79, 043506 (2009); 200 GeV Wino-like neutralino; difficult to accommodate pbar, \(\gamma \) bounds; liberties with e\(^+\) propagation must be taken…

![Graph showing positron fraction vs energy](image)
Nearby Pulsar (Geminga) as a Source

![Graph showing positron fraction vs energy with data points and two curves labeled Moskalenko & Strong (2004) and Yuksel et al. (2009).]
CERN calibration configuration:

5 layers of 5 cm BGO (2.5 cm in x and 2.5 cm in y)

~ 22 rad length ~ 1 interaction length

Flight config:

4 layers:

~ 18 rad length ~ .8 interact. length
• Designed to measure nuclei, not e± (e.g., unusual trigger);
• Uses 18 rad. len. EM calorimeter with a 0.75 int. len. C target;
• Use of a low Z target is good for detecting nuclei but increases probability of hadronic contamination of electron spectra;
• Leakage out the back of calorimeter can lead to pileup at lower energy. Common problem with miscalibrated calorimeters;
• No magnet, no e± separation;
• Flew in 2000, 2002; 2008 Nature paper only refereed publication so far...
Electron identification based on shower shape in *thin* calorimeter

Electron excess from KK dark matter

Lodz ICRC 2009: ATIC reanalysis could make the bump go away

CREAM: we shied away from this…
Fermi-LAT

- Precision tracker (Si strips/W sheets), CsI calorimeter, anticoincidence;
- Optimized for detecting gamma rays, electrons;
- No prominent spectral features;
- ATIC feature not seen!

A. A. Abdo et al., PRL 102, 181101 (2009)
“Cannot exclude the possibility of a 50% contamination by γ’s”
Summary of Electron Observations

• E^3 plot enhances spectral features;
• Moskalenko & Strong (2009) (dot-dashed red): GALPROP w/injection spectrum modified to fit FERMI data
• No reason to believe simple diffusion model can fit data over wide energy range (solar modulation issues at low energy, local sources at high energy).

• Fermi LAT does not see ATIC excess but spectral index does not match conventional diffusion model;
• Decline at low energy (<5 GeV) due to solar modulation;
• HESS sees expected decline in all-electron spectrum above 1 TeV;
• Green dashed curve below 2 TeV: Kobayashi (2004); prediction of the local electron flux from distant sources;
• Purple dashed curve above 2 TeV: Kobayashi (2004); contribution from Vela pulsar.
Hooper, Stebbins and Zurek PRD 79, 103513 (2009) fits ATIC excess with nearby (1-2 kpc) clump of annihilating DM;

Given the disagreement with Fermi-LAT, it is instructive to see how easy it was to fit ATIC…
Fitting Fermi Data with Conventional Diffusion Model + Local Source...

• Details of Fermi, HESS data can also be reproduced using modified GALPROP + contribution from GEMINGA (same as for positron fit).
What about pbars?

O. Adriani et al., PRL 102, 051101 (2009)

- Within range of modeling and experimental uncertainties, secondary production scenarios work very well, with no hint of additional signal required…
- Any dark matter enhancement of the pbar signal would be an extreme experimental challenge!
Future: CREST, CALET

- Antarctic LDB experiment designed to extend all-electron flux measurements up to 50 TeV;
- Detects UHE Electrons through their *synchrotron radiation* in the earth’s magnetic field;
- ConUS test flight May 2009;
- Antarctic flight Dec 2010.

Completion of electron picture... nothing to do with dark matter...

CALET-POLAR: 2011 balloon flight;

Eventually, potential CALET on Space Station ... 2013??
AMS

Alpha Magnetic Spectrometer (AMS);
- ISS, launch on STS-134 on Sept. 16, 2010? (in Obama budget);
- Last Space Shuttle mission; program termination Sept. 30, 2010;
- Good prospect to verify PAMELA (if it flies!).
PEBS

Positron Electron Balloon Spectrometer (PEBS);
- R&D Phase 2006-2009;
- PEBS-1 with permanent magnet: 2012 Kiruna (Sweden) flight;
- PEBS-2 with superconducting magnet: 2014/15 Antarctic flight?
- Very good prospects, not dependent on vagaries of Shuttle program…
PAMELA e$^+$ enhancement is very exciting (begs for confirmation);

Compatible with earlier HEAT e$^+$ spectral feature up to \sim20 GeV, in region where p rejection requirement is less dire);

Continued rise to 100 GeV looks like what one could expect from proton contamination; if real, it could be a DM signature but could also be due to an astrophysical source (nearby pulsar);

Excitement over the ATIC all-electron spectral feature has abated somewhat...

Fermi-LAT sees power-law spectrum essentially devoid of spectral features; electron spectrum easily accommodated by adjusting diffusion model parameters or source model;

The ability of theory to reproduce any feature demonstrates the lack of discriminating power of cosmic-ray positron and electron data taken alone;

Unraveling the origin of the features seen in the positron fraction is possible with combined observations (direct WIMP searches, γ-rays, accelerator data...) and improved theoretical modeling;

Hard experiments can sometimes be wrong; caution is needed when interpreting positron and electron spectra...

Exciting prospects for more data in the near future!