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What is the problem

1. The equilibrium of two charged masses:

• In newtonian physics: m1m2 = e1e2

• In GR one must solve the Einstein-Maxwell system: Rij − 1
2
Rij = 1

2

(
−FikF

k
j + 1

4
FlmF lmgij

)
(
√
−gF ik),k =

√
−gji

and find a solution without conic singularities

The main differences between classic and relativistic regime arise from

the repulsive nature of gravity near the charge. That can be seen also

by the RN metric

gtt = 1− 2M

r
+

Q2

r2
,

where gravity is repulsive for

r <
Q2

M

2. The gravitational and electric fields generated.
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Some historical remarks
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Perturbation Methods Exact Solutions
Copson (1927)

Electric field of a test charge
near a Schwarzschild b.h.

Majumdar − Papapetrou (1947)
mi = ei

Hanni−Ruffini (1973)
Electric force lines of a test charge

near a Schwarzschild b.h.

Linet (1976)
A correction of Copson solution

Belinski− Zakharov (1978)
Vacuum Solitons
and Alekseev (1980)

Electrovacuum Solitons
Solutions of Hauser − Ernst (1979)

and Sibgatulling (1984)
by IEM for rational axis data,

and of Alekseev(1985)
by IEM for rational monodromy data

Integral Equation Method

Bonnor (1993)
Equilibrium of a test particle

on RN background

Perry − Cooperstock (1997)
Equilibrium is possible
(3 numerical examples)

Bini−Geralico−Ruffini (2007)
Equilibrium of a test charge on RN
with back-reaction until first order

Alekseev −Belinski (2007)
Exact solution for equilibrium

(without strut) of two RN sources
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The Alekseev-Belinski Solution

<<Simplex sigillum veri>>

The explicit form of the Alekseev-Belinski solution is:

ds2 = H(ρ, z)dt2 − ρ2

H(ρ, z)
dϕ2 − f(ρ, z)(dρ2 + dz2) (1)

At = Φ(ρ, z), Aϕ = Aρ = Az = 0, (2)

with

H =
[(r1 −m1)

2 − σ2
1 + γ2 sin2 θ2][(r2 −m2)

2 − σ2
2 + γ2 sin2 θ1]

D2
(3)

Φ =
[(e1 − γ)(r2 −m2) + (e2 + γ)(r1 −m1) + γ(m1 cos θ + m2 cos θ2)]

D
(4)

f =
D2

[(r1 −m1)2 − σ2
1 cos2 θ][(r2 −m2)2 − σ2

2 cos2 θ2]

where

D = r1r2 − (e1 − γ − γ cos θ2)(e2 + γ − γ cos θ), (5)

while γ, σ1 and σ2 are defined by:

γ = (m2e1 −m1e2)(l + m1 + m2)
−1 ,

σ2
1 = m2

1 − e2
1 + 2e1γ , σ2

2 = m2
2 − e2

2 − 2e2γ.
(6)

The mathematical parameters coincide with the physical ones, there-

fore Mtot = m1 + m2 and Qtot = e1 + e2.
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The above formulas give the solution of the Einstein-Maxwell system only

if l satisfies the equilibrium condition

m1m2 = (e1 − γ)(e2 + γ). (7)

The distance l can be written as a function of the other parameters by the

very simple formula:

l = −m1 −m2 +
m1e2 −m2e1

2(m1m2 − e1e2)

[
(e2 − e1)±

√
(e1 + e2)2 − 4 m1m2

]
.

By definition l ≡ z2− z1 is the distance, expressed in the Weyl coordinate z,

between the two objects.

From (33) is clear that the parameters must satisfy the restriction

(e2 + e1)
2 > 4 m1m2, (8)

furthermore we impose the non-overlapping condition

l > σ1. (9)

In Proc. of XI Marcel Grossman Meeting (Berlin, July 2006), arXiv:gr-

qc/0710.2515, 2007. Alekseev and Belinski gave also the solution for arbi-

trary l.
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Possible/Not possible Configurations

1. extreme-extreme source (well known, Majumdar-Papapetrou);

2. extreme-not extreme: not allowed;

3. black hole-black hole: not possible without overlapping;

4. naked-naked: not possible at all;

5. black hole-naked singularity: possible in a certain range of m1, e1, m2, e2.

Only in this case (and in case 1.) it exists the Newtonian limit (large

l).
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Electric force lines definition

We define the electrical vector by the time-like components of the controvari-

ant tensor F ij:

Eα = Fα0. (10)

That definition is justified by the Gauss theorem (Wheeler, Geometro-dynamics):

4πQ =

∫
C

*F =

∫
C

∗Fijdxi ∧ dxj, (11)

where ∗Fij = 1/2εijklF
kl
√
−g.

Then it is natural to define (Hanni-Ruffini) the force lines as the solution

of the differential system: 
d
dλ

r1 = Er1

d
dλ

θ1 = Eθ1

(12)

or equivalently by

dr1

dθ1

=
Er1

Eθ1
,

Er1

Eθ1
= ((r1 −m1)

2 − σ2
1)

∂r1Φ

∂θ1Φ
. (13)

Physical interpretation (Christodoulou-Ruffini): a force line is a line tan-

gent to the direction of the electric force measured by a free-falling test charge

momentarily at rest, with initial 4-velocity

ut = (
√

gtt, 0, 0, 0). (14)

Note: that interpretation is valid only for gtt > 0.
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A: Two RN with charge of the same sign
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Figure 1: Force lines in a general case; the two RN have charges of the
same sign. Note that the critical spheroid in that coordinate representation
is an horizontal segment. Parameters used: m1 = 1, e1 = 0.7, m2 = 0.33,
e2 = 0.44.
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Figure 2: Force lines of a test charge near a RN with horizon. Parameters
used: m1 = 1, e1 = 0.1, m2 = 10−3, e2 = 1.3 · 10−2. Unstable configura-
tion.). The bold line is the separatrix.
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B: Two RN with charge of the opposite sign
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Figure 3: Force lines with charges of the opposite sign. Parameters used:
m1 = 1, e1 = 0.05, m2 = 0.3, e2 = −1.66. The bold line is the separatrix,
which now encircles also the central singularity of the b.h.: inside that region
the lines go from one charge to the other. Outside that region the lines go
from e2 to infinity (some of them pass also through the horizon).

13



-6 -4 -2 2 4 6

-5

-2.5

2.5

5

7.5

Figure 4: Mathematical continuation of the force lines inside the horizon.
(Warning: Forbidden picture!—“uncensored” version of the previous one).
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C: Cases with only one charge: RN near Schwarzschild

In the particular case in which the first source is neutral (i.e. e1 = 0), the

equilibrium distance is even simpler,

l = −m1 −m2 +
e2
2

2m2

1 +

√
1− 2 m1

(
e2
2

2m2

)−1
 , (15)

which can be always satisfied for sufficiently large values of the charge pa-

rameter e2.

It is worth noting that

e2
2

2m2

> 2m1 (16)

the “geometrical size” of the naked singularity cannot be smaller than the

Schwarzschild radius. Anyway it is possible to construct membrane-like mod-

els of a naked singularity with an external repulsive region. (V.Belinski,

M.Pizzi, Charged membrane as a source for repulsive gravity, submitted to

IJMPD)
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Figure 5: Force lines. The blank circle of radius 2m1 is the Schwarzschild
horizon. Parameters used: m1 = 1, m2 = 0.3, e2 = 1.5.
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Figure 6: Force lines with l = 3 m1, with m1 = 1, m2 = 10−4 and e2 =
0.023. The circle of radius 2m1 is the Schwarzschild horizon. The plots are
practically identical to the ones found by Hanni and Ruffini.
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Figure 7: Now the distance is l = 2 m1, or equivalently r1 = 3 m1.

Figure 8: Now the distance is l = 1.2 m1, or equivalently r1 = 2.2 m1.
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Stability

<<I am sorry for the longness of my letter, I had

not the time to write a shorter one.>>

(Pascal, Lettres Provinciales)

1. Perturbation of the metric with respect to the reciprocal distance be-

tween the two body

2. Strut’s force definition (Sokolov and Starobinski)

3. Analysis of the AB solution in the three different cases:

e1e2 > 0, e2e2 < 0, e1 = 0

Reference: M.Pizzi, A. Paolino, Stability in the Alekseev-Belinski solution,

to be published.

• When the solution is calculated for an arbitrary value of the distance

l = l0 + x it appears a conic singularity between the two bodies (which

is interpreted as a strut).

• Now, we assume that in the reality there will be no struts if the two

bodies will be displaced from the equilibrium position, but that the force

exercised by the two bodies one to the other will be precisely the op-

posite of FStrut, say

FBodies = −FStrut ; (17)
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indeed the eventual presence of a strut with such a force would balance

the repulsion/attraction of the bodies, keeping the system exactly in

“equilibrium”, with Ftot = FBodies + FStrut = 0.

• We want to calculate the energy-momentum tensor T j
i on this segment

in order to calculate the force of the strut. Since we know the metric it is

convenient to define T j
i by the Einstein equations 8πT j

i = Rj
i −1/2δj

i R.

• On the axis we can approximate the metric as:

ds2 = dt̃2 − dz̃2 − (dρ2 + a2ρ2dϕ2), a =
1

(
√

fH)ρ=0

. (18)

a 6= 1 between the two sources. A direct calculation of Rj
i gives Rj

i = 0,

R = 0, and thus T j
i = 0.

• However we can introduce a distribution-like source using the Gauss-

Bonnet theorem (D.D. Sokolov and A.A. Starobinski, Sov. Phys. Dokl.,

22(6), 312, 1977):∫
S

Kdσ = 2π −
∫

∂S

kgds (Gauss-Bonnet th.) (19)

K is the Gaussian curvature, it is the half of the Ricci scalar, K = 2R;

kg is the geodesic curvature:

kg = εij

(
d2xi

ds

dxj

ds
+ Γi

kl

dxk

ds

dxl

ds

dxj

ds

) (
gij

dxi

ds

dxj

ds

)−1/2

(20)

If S is a (small) disk of radius ε around the surface, we obtain:

R = π
1− a

a
δ(ρ),

∫ ε

0

∫ 2π

0

ρδ(ρ)dρdϕ ≡ 1 (21)

the result is independent of the radius of the disk.
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• Then, using Rz
z = R/2 and the Einstein eqns. we find:

T z
z =

1− a

4a
δ(ρ), (22)

using which we find the expression of the force:

FStrut =−
∫ ε

0

∫ 2π

0

T z
z

√
gρρgϕϕdρdϕ

=
1

2
(a− 1) (23)

where

a =

[
1− 2

m1m2 − (e1 − γ)(e2 + γ)

(l0 + x)2 −m2
1 −m2

2 + (e1 − γ)2 + (e2 + γ)2

]−1

(24)

• In the large distance limit it gives Coulomb-Newtonian result

FStrut =
m1m2 − e1e2

l20
. (25)

• Therefore the stability can be deduced from the sign of the derivative

of the force w.r.t. x; obviously we have to evaluate this quantity on the

equilibrium point x = 0:

(∂xFBodies)x=0 =
m2e1 −m1e2

(l0 + m1 + m2)2

[
2γ0 − e1 + e2

l20 −m2
1 −m2

2 + (e1 − γ0)2 + (e2 + γ0)2

]
;

(26)

where γ0 is γ evaluated on x = 0; the stability condition is:

(∂xFBodies)x=0 < 0. (27)

• The previous formula can be simplified without loss of generality using

the following considerations:
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1. Using the arbitrariness of the electric charge’s sign definition:

e2 > 0; (28)

2. Since we are considering a black hole and a naked singularity:

e1

m1

< 1 <
e2

m2

; (29)

3. Separability requirement:

l0 > σ1; (30)

4. Finally, the existence of a real l0 needs:

(e2 + e1)
2 > 4 m1m2. (31)

• Using the previous conditions, the stability condition (27) can be re-

duced to the following one:

X ≡ (m2 −m1)(e1 + e2) + (e2 − e1)l0 > 0; (32)

X is an irrational 4-parameters quantity, remembering that

l0 = −m1 −m2 +
m1e2 −m2e1

2(m1m2 − e1e2)

[
(e2 − e1)±

√
(e1 + e2)2 − 4 m1m2

]
.
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(A) Equal signed charges (e1 > 0, e2 > 0)

This is the presumably-only case in which we found also unstable equilibria.

Sub-case (A.1) m1 < m2. (BH smaller than NS)

If m2 > m1 then, necessarily from(29), e2 > e1: consequently X > 0 is always

satisfied and the equilibrium is always stable.

Sub-case (A.2) m2 < m1. (BH larger than NS)

Sub-sub-case (A.2.1) m2 < m1 and e1 < e2.

Numerically we found only stable equilibrium (when it exist).

Sub-sub-case (A.2.2) m2 < m1 and e2 < e1. (Unstable)

In this case X is always negative and thus the equilibrium is unstable. A par-

ticular situation of this sub-case is the small-particle limit (m2 = αe2
2, e2 → 0,

α < 1 constant), see e.g. plot (2) considered before.

That agrees with the instability found by Bonnor (Class. Quantum

Grav. 10, 2077-2082, 1993).

(B) Opposite signed charges (e1 < 0, e2 > 0)

In this case we suspect that the equilibrium is always stable. Indeed, we was

not able to found unstable equilibria, but we cannot assert that thy do not

exist because there is one subcase in which we was not able to demonstrate
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analytically. Anyway, we can demonstrate that this is true in the following

subcases.

Since X now is

X = (m2 −m1)(e2 − |e1|) + (e2 + |e1|)l0, (33)

then we can consider the two different sub-cases: m2 > m1 and m1 > m2.

Sub-case (B.1) m2 > m1. (BH smaller than NS)

If m2 > m1, then from condition (29) we have necessarily e2 > e1, which

implies that X is always positive.

Sub-case (B.2) m1 > m2. (BH larger than NS)

Otherwise, if m1 > m2, then we need to consider the two different sub-sub-

cases: |e1| ≷ e2.

Sub-sub-case (B.2.1) m1 > m2, |e1| > e2.

If |e1| > e2 then one can see at first sight from (33) that X is always positive.

Sub-sub-case (B.2.1) m1 > m2, |e1| < e2.(Stable?)

If |e1| < e2 we are not able to demonstrate that X is always positive, but we

can say that at least for enough large values of e2 this is true, because

lim
e2→∞

l0 ≈
m1

|e1|
e2, (34)

and thus X → m1

|e1|e
2
2 → +∞.
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(C) One charge only (e1 = 0)

This case is always stable. Indeed, considering e1 = 0, the stability condi-

tion (32) becomes:

l0 + m2 > m1. (35)

Then, considering the separability condition, which is now:

l0 > σ1 = m1, (36)

it is immediate to see that (35) is always true.

Remarks

• The most of the cases are stable

• The only unstable case we found is the small naked RN near the RN

black hole

• The one-charge case is always stable

• If we consider the configurations used in the electric force lines plot, we

find that they are all stable, except the case with a small naked charge

near the RN black hole. That agrees with Bonnor limit.
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