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Flashback:

V... There is a great deal of activity in the field these
days, but this activity is mainly in showing that the

previous activity of somebody else resulted in an error or
in nothing useful or in something promising. It is like a
lot of worms trying to get out of a bottle by crawling all

~lh Ath o T4 thhat thhn hawrde 3¢ 10 thhat
OVer €ACil UtllCl ll lb llUl llldt lllC DUUJCLllD nar u, IU 1S uUldl

the good men are occupied elsewhere. Remind me not to
come to any more gravity conferences...

(R.P. Feynman, Warsaw Conference 1962)

We are going to talk about Energy in General

Relativity: stars are in the skv, GR works fine, so

we heed a to the problem.




Cluantum

backreaction:

bevond Effective
lagrangian

dynamical
spacetimes

superradiance OFT on curved

spacetimes

The Dyado Atlas




Relssner-Norstrom (Ruffini et al.)
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FIGG. 3: The projection of the dyadosphere on the X — £ plane (X = rsinf, £ = rcos# are Cartesian-like coordinates built
up simply using the Boyver-Lindquist radial and angular coordinates) is shown in Fig. (a) for a non-extreme Heissner-Norstrom
black hole with the choice of parameter ¢ = 10% and £ = 0.5 and different values of the ratio |E|/E. = k = [0.1, 1, 10]. The
exterior curve corresponds to & = 0.1, the dyvadosphere shrinking for increasing values of £, i.e. as the electric field strength
becomes larger and larger than the critical field. The inner black disk represents the black hole horizon. Fig. (b) shows instead
the behaviour of the electromagnetic energy (7) as a function of g as shown in Fig. 1 for £ = 0.5 and different values of
k= [0.1, 1, 10], moving from the right to the left.




FIG. 2: Selected lines corresponding to fixed values of the the total energy of pairs (9) are given as a function of the two
parameters g and &, Only the solutions below the continuous heavy line are physically relevant. The configurations above the

continuous heavy lines correspond to unphysical solutions with rqs < 4.




Kerr-Newman: regular charged and rotating

stationary and axisymmetric black hole.
Bover-Lindquist coordinates, signature (+,-,-,-
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Effective Lagrangian of QED

Rap|d ReVIGW Of QFT Slde Remo Ruffini and She-Sheng Xue
arXiv:hep-th/0609081v1
Starting point: QED IN electromagnetlc flelds
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If a constant decay rate
Electric field only of the vacuum
IS present per unit
volume

If both constant
Electric and
Magnetic fields are

present
(Schwinger)

It can be

convenient to go to
the CF, but the
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center-of-fields frame, where the fields Bep uml E{:F are
parallel. In this frame. 3 = |Bcp| and ¢ = |Ecp|.




Let's compute DvadoRegion fast (Newman-Penrose).
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Solving for r and mtroducing the dimensionless gquantities £ = /M, o = a/M,
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FIG:. 2: The projection of the “dyvadotorus”™ on the X — & plane (X = rsinf, £ = recosf are Cartesian-like coordinates built
up simply using the Bover-Lindouist radial and angular coordinates) is shown for an extreme Kerr-Newman black hole with

g = 10 and different values of the charge parameter £ = [1,1.3, 1.49, 1.65] = 107 (from (a) to (d) respectively). The dashed
curves correspond to the case of vanishing rotation parameter, i.e. the Reissner-Norstrom case, with the “dyvadotorus” which

simply reduces to a sphere. The black circle represents the black hole horizon. Note that these are only representations, not

embeddings.




FI1:. 3: The projections of the surfaces corresponding to different values of the ratwo |E|/E. = k are shown for the same choice
of parameters as in Fig. 2 (b). as an example. The gray shaded region 15 part of the “dvadotorus” corresponding to the case

k =1 as plotted mn Fig. 2 (b). The region delimited by dashed curves corresponds to & = (L8, 1.e. to a value of the strength

of the electric field smaller than the critical one, and contains the “dyvadotorus;” the latter m turn contains the white region
corresponding to k= 1.4, 1.e. to a value of the strength of the electric field greater than the critical one.




unphysical

physical

Flts. 1: The space of parameters (£, ) 15 shown for different values of the rotation parameter o = [0,0.4, 0.6,0.8, 0.9, 1] and
hxed value of the polar angle & = 7 /3 (from bottom to top). The region below each curve represents the allowed region for

the existence of the “dﬁt_ldn:utn:arus" with fixed a. The conficurations above e ine correspond to unphvsical solutions where
ri < ry for the selected set of parameters.




The “dyadotorus” can be visualized as a 2-dimensional surface of revolution

around the rotation axis embedded in the usual Euclidean 3-space by
suppressing the temporal and azimuthal dependence.

This procedure of
embedding is done in

everyv textbooks of
o | e GR for Schwarzschild

solution.
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Bover-Lindquist coordinates



; |
=1
fJ |
2 2. |I
: |
I / i o
I,f | . , y
z o [ (| z o | 0 D
] : i - _.,f
4N 2} AN /
I ", | s | |I e
\ e N‘ l/
-2 | '
_35
- | :
a3 = 4 o 1 2 3 *4 2 = 4 8 1z 3 4
X X
(a) (b}
1 4

2 /\\ 3
o |IIIIl \ .-'"-----_-__-_--_-
/ I|II I|I |
| Ilu' _I_..----._Il_..
o | | P ol | | I |
—-—
|III II|
L
T
T

| _f\l :

i -_-_-'-—____.-'---
-3 -3 i

(e) (d)

FIG. 6 The projections an the X — Z plane of the embedding diagrams of Fig. 5 are shown, Dashed lines correspond to the
Minkowskian part of the embedding of the outer horizon.




Here the problem of the energy inside the
torus comes now, or stated more simply: what
Is the energy inside (??!) a finite-sized region

around a KN black hole?

Let’s study the Gravitational Mass of an
asympthotically flat spacetime i.e. its Total Energy.

Bardeen, Carter and Hawking
“The four laws of black hole mechanics”

Commun. Math. Phys. 31, p. 161 (1973




In a stationary axisymmetric aszmgtﬂttcallx flat space, there 1S a
unique time translational Killing vector K which is timelike near infinity

with KK, = —1 and a unique rotational Killing vector K* whose
orbits are closed curves with parameter length 2z. These Killing vectors
obey equations

~ ~ a;b _  pa b
Ka;b__"K[mh]ﬁ Kn;b=K[ﬂ:b]! K o R hK ’
~ ~ Fa:h a b
K. K"= K., K" K™% = —R% K",

Crucial:it's a four velocity (a timelike observer) at
spatial infinity only!

Papapetrou fields

Since K., 1s antisymmetric, one can mtegrate Eq. (3)
over a hypersurface S and transfer the volume on the left to an integral

over a 2-surface ¢S bounding §:

(Komar Integral) | K“’dX,,=—|R;K"dZ,, (5)

e85 5

where d2, and d2, are the surface elements of ¢S and S respectively.




The domaln under exam extends to
INfinity (to flat spacetime)!

S

volume inside

outer

€ boundary
at spatial
R Infinity
¢B outer oS
horizon ”
Minkowsky

here!



We shall choose the surface to be spacelike, asymptotically flat, tangent
to the rotation Killing vector K¢ and to intersect the event horizon [1]
in a 2-surface ¢ B. The boundary ¢S of S consists of ¢ B and a 2-surface
¢S, at inhimty. For an asymptotically flat space, the integral over ¢S,
in equation (3)is equal to —4n M, where M is the mass as measured from

infinity. Thus
|

| (2T — Tob) KdX, + | K“*dX,,, (6)

4 5
where / K'
Rap = 2Rgup=87T. Mass at infinity!!!

factor 2

Not simply Tmunu!!! trECE part...

The first integral on the right can be regarded as the contribution to the

total mass of the matter outside the event horizon, and the second
itegral may be regarded as the mass of the black hole.

The matter In this computation extends to space Infinity!




Let’'s come back to the azimuthal Killing Vector

Eq. (4) similarly to obtain an expression for the total angular momentum
J as measured asymptotically from infinity.

J=—| [ K* | (7)

The first integral on the right 1s the angular momentum of the matter,

"‘-"DI.“l Moy

and the second integral can be regarded as the angular momentum
of the black hole.




Let's these two Komar Integrals

One can introduce a time coordinate t which measures the parameter
distance from S along the integral curves of K“ (1.e. t.,,K“=1). The null
vector [*=dx®/dt, tangent to the generators of the horizon, can be

expressed as X
"= K+ QK" . (8)

The coefficient €4, is the angular velocity of the black hole and is the
same at all points of the horizon [9]. Thus one can rewrite Eq.(6) as

M=[QT =T KAE, +2Q,Jy +
S

I .
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where
1 { a:b ]

Jr” — _Eﬂ_‘_ ;.__'E h‘,‘,‘- ' HEﬂb
1s the angular momentum of the black hole. One can express d2,, as
[ d A, where n, 1s the other null vector orthogonal to ¢ B, normalized
so that n /“= —1, and dA 1s the surface area element of ¢B. Thus the
last term on the right of Eq. (9) 1s
L | kdA,
dn p
where k = —1[,.,n*l’ represents the extent to which the time coordinate
t is not an affine parameter along the generators of the horizon. One can
think of k as the “surface gravity” of the black hole in the following sense:




Final result for the integral mass formula

M=[QT}— T KdZ, +2QuJy + —f; A
S

Remember, It was defined as the mass at infinity...

where A 1s the area of a 2-dimensional cross section of the horizon.
When T,, 1s zero, 1.c. when the space outside the horizon is empty,
this formula reduces to that found by Smarr [7] for the Kerr solution.

In the Kerr solution,
I

— - YH .
BH ang. Veloc. x= 53m - 213 (14)

g4 724152
Surfacegrav. . WM —-Jy""
2M(M? +(M* - JH)V2) 7

Hor. area A =8n(M?* +(M*—J})'?).




For a Kerr-Newman Black hole

il
3
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Ju

KN
Esm.

It is easv to show that rearranging terms gives

H=zﬂﬁi:;%¢#@,

which coincides with Eq. (4) since Uy = (), & = 871 and ¢y = d.

Rearranging terms one can obtain more transparentl

| he mass formula for a charged rotating black hole 15 due to Christodoulou and

Buthm
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black hole, and M, 15 the so called rreducible mass, related to the surface area

of the horizon by
A — 16xM2 (2)




K

M=[QT}— T KL, +2QuJy+ —— A

| s —T— i

Interpreted This term is related in some sense to the mechanical
as a mass energy and in this formula is meaningful at infinity
at Infinity only, where we can associate it to the mass.

using the Remember that K Is timelike and nhormalized at
inear theory | spatial infinity only...

What can we do if we are interested in having the Mass

or the ener inside a finite sized portion of

spacetime...? For example inside the dyadotorus...seen
by a local observer or from infinity...

Thao
1 1IN

D g
g 1

including the black hole...(important for BH

thermodynamics, or for numerical Relativity,...)




The definition of M(R) Is a problem
(except In spherical simmetry where

w/ia havie the Michar—-CRharn macce)
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We are trying to localize energy In
GR, but we know from the

Equivalence Principle that this Is a

Jral operation (we can remove

Iocal effect of gravity going In a free

falling frame)...
We need




Quasilocal (TOTAL) energy Is an open
problem. Many results are valid In
specific coordinates systems, which
clearly Is an unnatural result 4 GR.
There are plenty definitons of Mass:

L

, Brown-York,

, Misher-Sharp,->o00
No one is completely satisfactory... see:

Quasi-Local Energy-Momentum and Angular On Living
Momentum in GR: A Review Article Reviews

Laszlo B. Szabados




We’'ll be interested in mechanical energy only...
we follow Katz, Lynden-Bell and Bicak
“Gravitational energy In stationary spacetimes”
Class Quant grav 23, p.7111 (2006)

[ were the Maxwell stress energy—momentum tensor
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observers whose velocities w# = .




From Gauss’ Theorem this result Is
Independent from the cut Iff

4 a “generic”’ cut, 1 gets a "conserved quantity” (a Charge)

Following [25] the total gravitational energy 1s

" . N aF -:I '
L = KT — LM,

where Mc¢? is the total energy.

This Is what Ruffini and Vitagliano
did in their articles.




There are various cases In which the
divergence Is zero (observers “made” with
Killing vectors).

In Kerr and Kerr Newman in Bovyer-
Lindquist coords, taking t=const slices as
the cut, as an example.

' ' . . ' .

v (A

1. if

("ho observer’).

2. If & Is the normalized Killing vector
(Static observer, non geodetic)
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3.1f

aalelan
AAASARAA—IR

(ZAMO, non geodetic)




All these observers have problems at
certain distance. Static dies at
ergosphere, while ZAMO at horizon.
Both give Infinite energy somewnhnere...

- / £ = 0; 15 the timelike

t=const cut. Finite Result,

but "not an observer’...




We need an observer which arrives all wa
down to the horizon, because the dvadotorus
iIntersects both horizon and erqgosphere.

Let's use geodetic observers in Doran-
Painleve’-Gullstrand like horizon penetratin
coordinates

Finally, the Kerr-Newman metric in the Painlevé-Gullstrand coordinates is given by
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with associated electromagnetic field

F = %[TE — a® cos® B)dr A [dT — asin® Add]
| Egzurﬂinﬁmsﬁdﬂ A + a?)dd — adT) .

which has the same form as (3) with df — di" and do — dd.




What are these coordinates?
Let’'s see the simple a=0 case.

+dr® +r (dHE + sin 9ffﬂi* ) . Shift dies at r=Q"2/12M.

Here gravity becomes
repulsive, but its unphysical

flat 3'9 E!GITIETI"_V because this region is inside

Q the inner horizon which is a
F = Zdr ndT Cauchy horizon (unphysical

Is the proper time as measured by a
free faIIing observer starting from rest at

Sl o sl

infinity and and moving radiall

Emah wWa aa B

 iIhward

Reqular Metric, constant Lapse, No stretched horizon
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appears Iin ..deep thing!




slicing observers (1 —slicing hereafter) have 4-velocity

2Mr— Q5" +d¥

Y i
Enerqgy density in KN

2
E(N) = 'Tif,m:',-"u"“,-"'u”' = ST?EE (r® — a” cos” # + 2a*) |

N = 0r —

uasilocal mechanical ener T=const cut

H ™ QE 5
EN), m) = 27 f fn EN W hdrdd =
]

da

1 = const hvpersurface

To avoid integration troubles we appoximate the
integration domain with a r= constant ellipsoid
which contains the ergoreqgion




Is not divergence free!
no conserved charge

But our T=constant cut for this PG machine IVes:

) ' r | gl 2 ; ,
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dear | T s

T}E;m! CH W £ = ¢, 15 the timelike

Killimg vector

which appears in the mass formula and in
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Ssummarizing

 IN BOYER-LINDQUIST COORDS, THE NON NORMALIZED TIME
KILLING VECTOR (Vitagliano-Ruffini) GIVES A FINITE CONSERVED
QUANTITY, BUT THIS "MECHANICAL ENERGY" IS MEANINGFUL AT
SPATIAL INFINITY ONLY, IT'S NOT A QUASILOCAL CONCEPT.

IN BOYER-LINDQUIST COORDS, NON GEODESIC OBSERVERS
GIVES A CONSERVED QUANTITY WHICH HOWEVER
DIVERGES SOMEWHERE CLOSE TO THE BH: IT'S A QUASILOCAL
ENERGY BUT NOT GLOBALLY WELL DEFINED.

e IN HORIZON PENETRATING COORDINATES (P-G) A GEODESIC

OBSERVER (with T=const cuts) GETS A QUASILOCAL ENERGY
(WELL DEFINED EVERYWHERE) WHICH IS NOT A CONSERVED

C SUl £ s 1 A R T

We consider the enerav measured bv this observer

as an acceptable quasilocal energy which gives the
correct whole spacetime limit! This result is the
same as Ruffini-Vitagliano’s one

We can consequently define for this observer:




( ro )2 -aﬂd},& + (Hﬁya + a®) arctan(a/ iy, )

ary + (r% +a?)arctan(a/r )

Extreme highly rotatin
Kerr-Newman Black

hole and (non extreme)
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JU 1 W

¢
and 10 solar masses.

Notice: KN is more
compact because
horizon iIs smaller than

RN arounu a half]! l




Concluding Remarks

Kerr-Newman black hole can be a very compact

source 'Fnr nncclhln OED DroOCess n I:: Damaoinir
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Ruffini” but with respect to Reissner-Nordstrom
we’ll have much more complications:

MHD (particles moving in rotatin

o EM fields)

backreaction:

g GWS (non spherical pair
dynamical |2I‘OC| LICtiOh l

spacetimes

superradiance L BAGKREAE"—IGN
spacetimes
MHD o AND DYNAMICAL SPACETIMES

NO KERR-NEWMAN
PERTURBATION THEORY!!II

GWs Hic Sunt
Leones

The Dyado Atlas



