GWs from neutron star oscillations: comparisons between linear and nonlinear evolutions

Pescara, July 18th 2008
S. Bernuzzi
Parma University and INFN
L. Baiotti (Tokyo), G. Corvino (Parma), R. De Pietri (Parma) and A. Nagar (IHES)
Outline of the work

GWs from even-parity oscillation of a perturbed TOV star

Compare the results obtained from
3D FGR simulations with perturbative ones (1D, linear)

✓ Zerilli extraction
✓ Ψ_4 extraction
✓ Quadrupole formulas
✓ Non-linear effects (as a function of the amplitude of the initial perturbation)
Motivation

GWs from NS oscillations

- excited e.g. after Supernova Core Collapse
- non-linear oscillations!

- test-bed for 3D wave extraction methods
 (in non-vacuum spacetimes) and for analysis methods

Why a linear time-domain code?

- Perturbative methods: quasi equilibrium systems
- 1D: computationally less expensive than 3D
- Accurate results (more resolution)

- Check 3D extraction methods
- Basis for non-linear analysis
Strategy: the double approach

\[G_{\mu\nu} = 8\pi T_{\mu\nu} \]

\[\delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu} \]

Cactus-Carpet-Whisky

PerBaCCo
Strategy: the double approach

\[G_{\mu \nu} = 8 \pi T_{\mu \nu} \]

\[\delta G_{\mu \nu} = 8 \pi \delta T_{\mu \nu} \]
1D time-domain code: **PerBaCCo**

PerturBative Constrained Code

- All kind of TOV perturbations (RW gauge, spherical coord.)
- Radial, Axial and Polar perturbations: (constrained) Wave Eqs
- Standard 11th order FD schemes
 - Even-parity: constrained algorithm
- Use tabulated equations of state (EOS) for nuclear matter
- Zerilli-Moncrief (even-parity) and Regge-Wheeler (odd-parity) gauge invariant functions

\[
\begin{align*}
 h_+ - ih_\times &= \frac{1}{r} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} N_l \left(\Psi^{(e)}_{l,m} + i \Psi^{(o)}_{l,m} \right) - 2 Y_{l,m}(\theta, \phi)
\end{align*}
\]

Cactus-Carpet-Whisky: setup

- Metric/Matter evolution:
 - ✓ (ADM) NOK-BSSN + GRHD Cons Form
 - ✓ gauge: “l+log” + Gamma Driver
 - ✓ MoL: ICN
 - ✓ HRSC: Marquina + PPM
- Grid:
 - ✓ 3 cubic boxes, Dx=0.5
 - ✓ Octant Sym
 - ✓ CFL = 0.25

Developed mainly @ AEI, LSU
Computer Cluster in Parma

ALBERT

- 16 nodes: bi-processor opteron 2 GHz
- 4 GB RAM
- 3 TB RAID 5 storage
- Infiniband

ALBERT100

- 32 nodes: bi-processor Pentium III - 1.5 GB RAM
- 100BaseT fast ethernet
- Peak: 100 Gflops
Initial Data: Whisky_PerturbTOV

- **TOV eqs** (Whisky_TOVSolverC)
- **Perturbation** (Whisky_PerturbTOV):
 - ✓ add pressure perturbation
 - ✓ solve (perturbative) constraints for each multipoles
 - ✓ construct perturbed metric
 - ‣ Fix a specific multipole (1 constraint eq)
 - ‣ Axisymmetric pressure perturbation
 - ‣ Metric perturbation:

\[
\delta s^2_{\ell_0} = (\chi_{\ell_0} + k_{\ell_0}) e^{2a} dt^2 - 2\psi_{\ell_0} e^{a+b} dt d\bar{r} \\
+ e^{2b} \left[(\chi_{\ell_0} + k_{\ell_0}) d\bar{r}^2 + \bar{r}^2 k_{\ell_0} d\Omega \right] Y_{\ell_0}
\]
Matter perturbation

Perturbed pressure:

\[\delta p(r, \theta) \equiv (p + \mu) H_{\ell 0}(r) Y_{\ell 0}(\theta) \]

Enthalpy profile:

\[H = h \sin \left[\frac{(n + 1) \pi r}{2R} \right] \]

Quadrupolar mode:

\[\ell = 2 \]
\((\text{Linearised}) \text{ Hamiltonian constraint solution} \)

\[
\begin{align*}
&\left(1 - \frac{2m}{r}\right) k_{,rr} + \left[\frac{2}{r} - \frac{3m}{r^2} - 4\pi\varepsilon r\right] k_{,r} - \left[\frac{\Lambda}{r^2} - 8\pi\varepsilon\right] k = \\
&- \frac{8\pi(p + \varepsilon)}{C_s^2} H + \left(1 - \frac{2m}{r}\right) \chi_{,r} + \left[\frac{2}{r} - \frac{2m}{r^2} + \frac{\Lambda}{2r} - 8\pi\varepsilon r\right] \chi
\end{align*}
\]

Conformally Flat 1D (fluid modes):

\(\chi_{\ell 0} = 0 \)
Equilibrium model and radial modes

- **Perfect fluid, Polytropic Model A0** \(M = 1.4M_\odot \rho_c = 1.28 \times 10^{-3} \) \(R = 9.57 \)

- **Stable Evolution unperturbed model (Radial Modes)**

<table>
<thead>
<tr>
<th>n</th>
<th>Pert. [Hz]</th>
<th>3D [Hz]</th>
<th>Diff. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1462</td>
<td>1466</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>3938</td>
<td>3935</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>5928</td>
<td>5978</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- **Stable Evolution of the sequence AU**
 (Uniformly rotating models and fixed mass)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>F [Hz]</th>
<th>F(CF) [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU0</td>
<td>1466</td>
<td>1458</td>
</tr>
<tr>
<td>AU1</td>
<td>1369</td>
<td>1398</td>
</tr>
<tr>
<td>AU2</td>
<td>1329</td>
<td>1345</td>
</tr>
<tr>
<td>AU3</td>
<td>1265</td>
<td>1283</td>
</tr>
<tr>
<td>AU4</td>
<td>1166</td>
<td>1196</td>
</tr>
<tr>
<td>AU5</td>
<td>1093</td>
<td>1107</td>
</tr>
</tbody>
</table>

[Dimmelmeier et al 2007]
Even-parity perturbative waves: identikit

1. Fourier analysis
2. Fit analysis
3. Finite extraction effects

- Radial grid with 300pts inside the star
- Long evolution (about 1 sec)
1. Fourier analysis:

\[\nu_f \quad 1581 \text{ Hz} \]
\[\nu_{p_1} \quad 3724 \text{ Hz} \]
2. Fit analysis - QNMs template:

\[\Psi^{(e)}_{20} \sim \sum_{k=0}^{N} A_{2k} \cos(2\pi \nu_{2k} t + \phi_{2k}) \exp(-\alpha_{2k} t) \]

\[N = 2 \]
2. Fit analysis - results:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Conf-</th>
<th>Conf+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{20}</td>
<td>$1.5837369e+03$</td>
<td>$1.5837368e+03$</td>
<td>$1.583737e+03$</td>
</tr>
<tr>
<td>ν_{21}</td>
<td>$3.7069413e+03$</td>
<td>$3.7069401e+03$</td>
<td>$3.7069424e+03$</td>
</tr>
<tr>
<td>α_{20}</td>
<td>3.7358</td>
<td>3.7349</td>
<td>3.7367</td>
</tr>
<tr>
<td>α_{21}</td>
<td>$4.22e-01$</td>
<td>$4.15e-01$</td>
<td>$4.29e-01$</td>
</tr>
<tr>
<td>A_{20}</td>
<td>$1.31452e-03$</td>
<td>$1.31430e-03$</td>
<td>$1.31475e-03$</td>
</tr>
<tr>
<td>A_{21}</td>
<td>$3.52e-05$</td>
<td>$3.50e-05$</td>
<td>$3.53e-05$</td>
</tr>
<tr>
<td>ϕ_{20}</td>
<td>$2.809e-01$</td>
<td>$2.807e-01$</td>
<td>$2.811e-01$</td>
</tr>
<tr>
<td>ϕ_{21}</td>
<td>$3.965e-01$</td>
<td>$3.929e-01$</td>
<td>$4.002e-01$</td>
</tr>
</tbody>
</table>

Damping Times:

\[\tau_f = 0.268 \text{ sec (0.1\%)} \]
\[\tau_{p_1} = 2.28 \text{ sec (2\%)} \]
3. Finite extraction effects
3. Finite extraction effects

\[\max \Psi^{(e)}(r) \sim A^\infty + A^1 \frac{M}{r} + \ldots \]

<table>
<thead>
<tr>
<th>r [M]</th>
<th>(\delta A/A^\infty_{fit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49.30%</td>
</tr>
<tr>
<td>50</td>
<td>8.90%</td>
</tr>
<tr>
<td>100</td>
<td>1.74%</td>
</tr>
<tr>
<td>200</td>
<td>1.62%</td>
</tr>
</tbody>
</table>
Comparing 1D VS 3D Waves

Different values of the initial perturbation amplitude:

Wave Extraction at $r = 80M$

$h = [0.001, 0.01, 0.05, 0.1] := [h_0, h_1, h_2, h_3]$
<table>
<thead>
<tr>
<th>h</th>
<th>ν^f_{3D} [Hz]</th>
<th>Diff. [%]</th>
<th>ν^{p1}_{3D} [Hz]</th>
<th>Diff. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>h0</td>
<td>1578</td>
<td>0.2</td>
<td>3705</td>
<td>0.5</td>
</tr>
<tr>
<td>h1</td>
<td>1576</td>
<td>0.3</td>
<td>3705</td>
<td>0.5</td>
</tr>
<tr>
<td>h2</td>
<td>1573</td>
<td>0.5</td>
<td>3635</td>
<td>2.4</td>
</tr>
<tr>
<td>h3</td>
<td>1623</td>
<td>2.7</td>
<td>3565</td>
<td>4.3</td>
</tr>
</tbody>
</table>

![Graph showing amplitude as a function of h with percentage differences highlighted]
Initial "burst"

- High frequency oscillations
- Linear grows in r
- Increases with resolution
- Greater for higher initial perturbation amplitude
- Smaller when full constraints are solved

Unphysical and related to the constraint violation and to the Zerilli 3D extraction...
Ψ₄ extraction

![Graph showing Ψ₄ extraction over time, with two lines representing 3D-code and 1D-code, and a horizontal axis labeled 'h₀ perturbation'.]
Ψ₄ extraction

Consistent with 1D
DOES NOT grows in r
How to recover the Zerilli’s?
How to recover the Zerilli’s?

\[\Psi^{(e)}(t) \propto \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \left\{ \lim_{r \to \infty} [r \Psi^4(t'', r)] \right\} \]

\[= Q_0 + Q_1 t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left\{ \lim_{r \to \infty} [r \Psi^4(t'', r)] \right\} \]

\[= Q_0 + Q_1 t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left(r \Psi^4(t'', r) + f(t'', r) \right) \]

\[= Q_0 + Q_1 t + \left[\int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^4(t'', r) \right] + \sum_{k=2}^{n} F_k(r)t^k + \ldots \]
How to recover the Zerilli’s?

1. “off-set” function

\[\Psi^{(e)}(t) \propto \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^4(t'', r) \right] \right\} \]

\[= Q_0 + Q_1 t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' \left\{ \lim_{r \to \infty} \left[r \Psi^4(t'', r) \right] \right\} \]

\[= Q_0 + Q_1 t + \int_{0}^{t} dt' \int_{0}^{t'} dt'' (r \Psi^4(t'', r) + f(t'', r)) \]

\[= Q_0 + Q_1 t + \left[\int_{0}^{t} dt' \int_{0}^{t'} dt'' r \Psi^4(t'', r) \right] + \sum_{k=2}^{n} F_k(r)t^k + \ldots \]
How to recover the Zerilli’s?

1. “off-set” function

\[\Psi^{(e)}(t) \propto \int^{t}_{-\infty} dt' \int^{t'}_{-\infty} dt'' \left\{ \lim_{r \to \infty} [r \Psi^4(t'', r)] \right\} \]

\[= Q_0 + Q_1 t + \int^{t}_{0} dt' \int^{t'}_{0} dt'' \left\{ \lim_{r \to \infty} [r \Psi^4(t'', r)] \right\} \]

\[= Q_0 + Q_1 t + \int^{t}_{0} dt' \int^{t'}_{0} dt'' (r \Psi^4(t'', r) + f(t'', r)) \]

\[= Q_0 + Q_1 t + \left[\int^{t}_{0} dt' \int^{t'}_{0} dt'' r \Psi^4(t'', r) \right] + \sum_{k=2}^{n} F_k(r)t^k + \ldots \]

2. “slow” variation

Let’s try:

\[\Psi^{(e)}(t, r) \propto \int^{t}_{0} dt' \int^{t'}_{0} dt'' r \Psi^4(t'', r) + Q_0 + Q_1 t + F_2 t^2 + \ldots \]
$\Psi(e)$ from 3D ψ^4 Corrected

Ψ^4 bare

floor

u

$\Psi(e)$

from 3D ψ^4 Corrected

from 3D Ψ^4 bare

floor
(Once corrected for the floor) Zerilli from the Ψ_4 extraction is perfectly consistent with the perturbative...
Non-linear effects

Mode couplings:

✓ non-axisymmetric + odd parity modes: suppressed
✓ radial modes
✓ ell=4,6 m=0,4 (grid)

STRATEGY:

Fourier analysis of “Weak” couplings

\[\langle \rho \rangle_{\ell,m}(t) = \int d^3 x \rho(t, x) Y_{\ell,m} \]

\[\nu_{coupl} = \nu_1 \pm \nu_2 \]
\[\langle \rho \rangle_{2,0} \]
\[\langle \rho \rangle_{2,0} \]
\[\langle \rho \rangle_{2,0} \]

[Passamonti et al. 2006 / Dimmelmeier et al 2007]
Quadrupole extraction

Functional form:

\[I_{ij}[\varrho] \equiv \int d^3x \varrho x_i x_j \]

No “Standard Quadrupole” in full GR.
Possible generalizations worth to try

Multipole:

\[rh_{2,0} = \sqrt{\frac{24\pi}{5}} (\ddot{I}_{zz} - \frac{1}{3} I) \]

SQF: \[\varrho = \rho \]

SQF1: \[\varrho = \alpha^2 \sqrt{\gamma} T^{00} \]
[Blanchet et al 1990/ Shibata Sekiguchi 2003]

SQF2: \[\varrho = \sqrt{\gamma} W \rho \]
[Nagar et al. 2005]

SQF3: \[\varrho = u^0 \rho = \frac{W}{\alpha} \rho \]
[Blanchet et al 1990/ Shibata Sekiguchi 2003]

\[h_+ - ih_\times = \sum_{\ell,m} h_{\ell,m} - 2Y_{\ell,m} \]

(S.Bernuzzi - Pescara - July, 18th 2008)
Frequencies : OK

Differences in amplitude !

\[\text{SQF : } \varrho = \rho \]

\[\text{SQF1: } \varrho = \alpha^2 \sqrt{\gamma T^{00}} \]

\[\text{SQF2: } \varrho = \sqrt{\gamma W \rho} \]

\[\text{SQF3: } \varrho = u^0 \rho = \frac{W}{\alpha} \rho \]
Frequencies : OK

Differences in amplitude !

SQF : $\varrho = \rho$

SQF1: $\varrho = \alpha^2 \sqrt{\gamma} T^{00}$

SQF2: $\varrho = \sqrt{\gamma} W \rho$

SQF3: $\varrho = u^0 \rho = \frac{W}{\alpha} \rho$
Summary

• **Perturbative ID** (*Whisky_PerturbTOV*)

• Evolve with both 3D FGR and 1D perturbative code

• **Wave extraction**: WaveExtract (Zerilli), Psikadelia (Psi4) and SQFs

• Compare results
Conclusions

• **Zerilli Extraction**
 - ✓ 3D Zerilli extraction consistent with Perturbative (linear regime)
 - ✓ Extraction r>80M
 - ✓ initial junk Zerilli Extraction

• **\(\Psi^4 \) Extraction**
 - ✓ 3D \(\Psi^4 \) extraction consistent with Perturbative (linear regime)
 - ✓ Extraction r>80M
 - ✓ NO junk radiation
 - ✓ Off-set subtraction needed
Conclusions

- **Zerilli Extraction**
 - ✓ 3D Zerilli extraction consistent with Perturbative (linear regime)

- **Ψ4 Extraction**
 - ✓ 3D Ψ4 extraction consistent with Perturbative (linear regime)

Comparison with perturbative simulations indicates that both methods must be taken into account to extract accurate waveforms.
Conclusions (cont.)

- **Quadrupole Extraction**
 - ✓ Frequencies are properly captured
 - ✓ Amplitudes are underestimated
 - ✓ BEST: SQF2

- **Non-linear effects**
 - ✓ radial couplings
 - ✓ overtones couplings
 - ✓ self couplings

[Shibata Sekiguchi 2003]

[Passamonti et al. 2006 / Dimmelmeier et al 2007]
Thank you very much!

REFERENCES:
1. Nagar 2004
2. gr-.qc/0408041 2004
3. Nagar et al. 2004
4. Bernuzzi, Nagar & De Pietri 2008
5. Bernuzzi & Nagar 2008